Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 cấp quận năm 2019 - 2020 phòng GDĐT Ba Đình - Hà Nội

Thứ Năm ngày 07 tháng 11 năm 2019, phòng Giáo dục và Đào tạo quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi lớp 9 cấp quận môn Toán năm học 2019 – 2020. Đề thi HSG Toán 9 cấp quận năm 2019 – 2020 phòng GD&ĐT Ba Đình – Hà Nội gồm có 5 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có 1 trang. Trích dẫn đề thi HSG Toán 9 cấp quận năm 2019 – 2020 phòng GD&ĐT Ba Đình – Hà Nội : + Cho nửa đường tròn (O) đường kính AB, dây CD (C thuộc cung AD), gọi M là chân đường vuông góc kẻ từ A đến CD, trên tia đối của tia DC lấy điểm N sao cho CM = DN. a) Chứng minh BN vuông góc với CD. b) Gọi I là giao điểm của AD và BC. Chứng minh: S_AIB = S_AMC + S_CID + S_DNB. [ads] + Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. a) Cho biết AH = 12 cm và BC = 25 cm. Tính tổng AB + AC. b) Đường thẳng đi qua trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M và N. Chứng minh rằng: 1/AM^2 + 1/AN^2 = 9/BC^2. + Cho A là một tập hợp gồm ba số tự nhiên có tính chất: tổng hai phần tử tùy ý của A là một số chính phương. Chứng minh rằng: trong tập hợp A có không quá một số lẻ. + Cho a, b là các số thực dương thỏa mãn a + 1/b ≤ 1. Tìm giá trị lớn nhất của biểu thức T = ab/(a^2 + b^2). + Tìm số tự nhiên a biết a + 20 và a – 69 đều là số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Yên Bình - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Bình, tỉnh Yên Bái (đề chính thức và đề dự bị); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 29 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Yên Bình – Yên Bái : + Tìm số tự nhiên biết: Nếu số đó cộng thêm 64 đơn vị hoặc bớt đi 35 đơn vị thì ta đều được một số chính phương. + Cho hình vuông ABCD cạnh a. Trên các cạnh BC và AD lần lượt lấy các điểm E và F sao cho CE = AF. Các đường thẳng AE, BF cắt đường thẳng CD theo thứ tự ở M và N. a) Chứng minh: CM.DN = a2; b) Gọi K là giao điểm của NA và MB. Chứng minh: 90o MKN; c) Các điểm E và F có vị trí như thế nào thì MN có độ dài nhỏ nhất? + Cho tứ giác ABCD có AC = 10cm, BD = 12cm và góc giữa AC và BD bằng 300. Tính diện tích tứ giác ABCD.
Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho hai số tự nhiên a, b thỏa mãn 3a2 + a = 4b2 + b. Chứng minh a – b và 4a + 4b + 1 đều là số chính phương. + Cho tam giác ABC nhọn (AB < AC). Đường tròn tâm I nội tiếp tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Gọi M là trung điểm của BC. Gọi N là giao điểm của ID và EF. Qua N kẻ đường thẳng song song với BC cắt AB, AC tại Q và P. Qua A kẻ đường thẳng song song với BC cắt EF tại K. a) Chứng minh IP = IQ. b) Chứng minh IAM = FKI. c) Gọi S, L, V lần lượt là giao điểm của AI, BI, CI với BC, CA và AB. Chứng minh. + Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng tồn tại một số có dạng 111…11 chia hết cho p.
Đề HSG Toán 9 vòng 3 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 vòng 3 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022.