Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2019 - 2020 sở GDĐT Yên Bái

Ngày … tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Yên Bái tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp tỉnh môn Toán 12 năm học 2019 – 2020. Đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2019 – 2020 sở GD&ĐT Yên Bái gồm 07 bài toán dạng tự luận, đề thi có 01 trang, có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2019 – 2020 sở GD&ĐT Yên Bái : + Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, AB = a√3, ACB = 60 độ, hình chiếu vuông góc của S lên mặt phẳng (ABC) là trọng tâm của tam giác ABC, gọi E là trung điểm cạnh AC, biết góc giữa SE và mặt phẳng đáy bằng 30 độ. a) Tính theo a thể tích khối chóp S.ABC và khoảng cách từ C đến mặt phẳng (SAB). b) Tính góc giữa hai mặt phẳng (SAC) và (ABC). [ads] + Cho tam giác ABC nhọn, nội tiếp đường tròn (O), có đường cao AD (D thuộc BC). Kẻ DE, DF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). BF giao CE = I, K = BF giao DE, L = CE giao DF, hai điểm M, N lần lượt là trung điểm của AD và AI. Chứng minh rằng: a) Đường thẳng KL song song với đường thẳng BC. b) M, N, O thẳng hàng. + Từ tập hợp tất cả các số tự nhiên có 5 chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Tính xác suất để trong số tự nhiên lấy ra được chỉ có mặt ba chữ số khác nhau. + Cho hàm số y = (mx + 9)/(x + m). Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-∞;1). + Tìm tất cả các số nguyên dương n sao cho n^4 + n^3 + 1 là số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Phú Yên
Ngày 06 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Phú Yên; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho điểm M tùy ý nằm bên trong tam giác ABC. Gọi S1, S2, S3 lần lượt là diện tích của các tam giác MBC, MAC, MAB. Chứng minh rằng S1.MA + S2.MB + S3.MC = 0. + Trong mặt phẳng Oxy, cho parabol (P): y = x2 + px + q với q khác 0. Biết rằng (P) cắt trục Ox tại hai điểm phân biệt A, B và cắt trục Oy tại C. Chứng minh rằng khi p và q thay đổi, đường tròn ngoại tiếp tam giác ABC luôn đi qua một điểm cố định. + Cho hệ phương trình. Tìm tất cả các giá trị của a và b để hệ phương trình có nghiệm duy nhất.
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Cà Mau
Ngày 04 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Cà Mau tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Cà Mau; đề gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Cà Mau : + Trong mặt phẳng Oxy cho tam giác ABC có đỉnh A(1;2), đường trung tuyến và đường phân giác trong hạ từ đỉnh B lần lượt có phương trình d: 2x – 3y = 2, d1: 9x – 3y = 16. Tìm tọa độ đỉnh C của tam giác ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a. Biết SA = SB = SC = a. Đặt SD = x (0 < x < a√3). a) Tính số đo góc giữa đường thẳng SB và mặt phẳng (ABCD) khi x = a. b) Tính x theo a sao cho tích AC.SD lớn nhất. + Cho đa giác đều có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của (H). Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật nhưng không phải là hình vuông.
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Bình Phước
Ngày 15 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bình Phước; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Phước : + Cho tập T = {1; 2; 3; 4; 5}. Gọi H là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số đôi một khác nhau thuộc T. Chọn ngẫu nhiên một số thuộc H. Tính xác suất để số được chọn có tổng các chữ số bằng 10. + Cho hình vuông ABCD có A(-1;2). Gọi M, N lần lượt là trung điểm BC và CD. Gọi H là giao điểm của BN và AM. Viết phương trình đường tròn ngoại tiếp tam giác HDN biết phương trình đường thẳng BN: 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi H là trung điểm AB. Tính thể tích khối chóp S.ABCD và tan (SH;(SCD)).
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Kon Tum
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Kon Tum; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Kon Tum : + Một nhóm gồm 9 học sinh một lớp trong đó có ba bạn Việt, Nam và Hùng đi dự đại hội Đoàn trường, ban tổ chức sắp xếp ngẫu nhiên 9 học sinh này ngồi vào một dãy ghế được đánh số từ 1 đến 9. Tính xác suất để số ghế của bạn Hùng bằng trung bình cộng số ghế của hai bạn Việt và Nam. + Biết mặt phẳng (ABC) vuông góc với mặt phẳng (ABD). Chứng minh rằng cos A.cos B = cos C với A, B, C là ký hiệu ba góc tương ứng với các đỉnh A, B, C của tam giác ABC. + Cho hàm số f(x) = -x4 + 2mx2 – m2 – 1. Tìm m để đồ thị hàm số f(x) có ba điểm cực trị và ba điểm đó cùng gốc tọa độ O lập thành tứ giác nội tiếp đường tròn.