Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Xuân Ôn Nghệ An

Nội dung Đề thi HSG lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Xuân Ôn Nghệ An Bản PDF Đề thi HSG Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Xuân Ôn – Nghệ An (vòng 2) gồm có 01 trang với 05 bài toán tự luận, học sinh có 150 phút để làm bài, kỳ thi nhằm tuyển chọn các em học sinh khối 11 giỏi Toán vào đội tuyển học sinh giỏi môn Toán lớp 11 của nhà trường, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Xuân Ôn – Nghệ An : + Cho tứ diện ABCD, trên hai cạnh AD và BC lần lượt lấy các điểm M và N sao cho AM/MD = CN/NB = 1/2. Hai điểm E, F lần lượt thuộc BM và DN sao cho EF // AC. Tính tỉ số EF/AC. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang với AD // BC và AD = 2BC. Gọi O là giao điểm của AC và BD, điểm M thay đổi nằm trong hình thang sao cho OM không song song với cạnh nào của hình thang. Qua M dựng đường thẳng song song với SO cắt các mp(SAB), (SBC), (SCD) và (SDA) lần lượt tại các điểm E, F, G và H. Chứng minh rằng: MF + 2(ME + MG) + 4MH = 9SO. + Gọi S là tập tất cả các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một số trong tập S. Tính xác suất để số được chọn chia hết cho 45. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 11 năm 2021 - 2022 cụm trường THPT - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp cụm môn Toán 11 năm học 2021 – 2022 cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội.
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2021 - 2022 sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2021 – 2022 sở GD&ĐT Lạng Sơn : + Tìm số hạng không chứa x trong khai triển với x khác 0, biết n là số nguyên dương thỏa mãn. + Cho một đa giác đều 2n đỉnh với n >= 3. Gọi S tập các tam giác cân, không đều và có ba đỉnh là ba đỉnh của đa giác. Gọi T là tập tất cả các tam giác có ba đỉnh là ba đỉnh của đa giác. Chứng minh rằng số phần tử của tập T\S không vượt quá. + Một cái phễu có dạng hình nón có chiều cao bằng 3cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của lượng nước trong phễu bằng chiều cao của phễu. Bịt kín miệng của phễu, tính chiều cao mực nước trong nón sau khi lật lại (biết công thức tính thể tích của khối nón có bán kính đáy r = OA và chiều cao h = SO là V = 1/3pir2h).
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2021 - 2022 sở GDĐT Bình Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Sáu ngày 18 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2021 – 2022 sở GD&ĐT Bình Định : + Rút ngẫu nhiên 8 tấm thẻ trong 20 tấm thẻ được đánh số từ 1 đến 20. Tìm xác suất để 8 tấm thẻ rút ra có 5 tấm thẻ mang số lẻ, 3 tấm thẻ mang số chẵn, trong đó có đúng 3 tầm thẻ mang số chia hết cho 3. + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là một điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M là trung điểm đoạn HC. Xác định tọa độ điểm C biết đỉnh B nằm trên đường thẳng x + y + 7 = 0. + Cho hình thoi ABCD có BAD = 60° và AB = 2a. Gọi H là trung điểm AB, trên đường thẳng d vuông góc với mặt phẳng (ABCD) tại H lấy điểm S thay đổi khác H. Tính SH khi góc giữa SC và mặt phẳng (SAD) có số đo lớn nhất.
Đề thi học sinh giỏi tỉnh Toán 11 năm 2021 - 2022 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 11 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Gọi E là tập các số tự nhiên chẵn có bốn chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ tập E. Tính xác suất để chọn được số có mặt đồng thời hai chữ số 2 và 3. + Cho các số thực không âm x, y thỏa mãn x2 + y2 + xy + 2 = 3(x + y). Tìm giá trị lớn nhất, nhỏ nhất của biểu thức P = (3x + 2y + 1)/(x + y + 6). + Cho dãy số {un} xác định bởi. Chứng minh rằng dãy có giới hạn hữu hạn và tìm giới hạn đó.