Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 9 - Nguyễn Chín Em (Tập 1)

Tài liệu gồm 208 trang được biên soạn bởi thầy Nguyễn Chín Em, tuyển tập lý thuyết, dạng toán, phương pháp giải và bài tập các chủ đề Toán 9 giai đoạn học kỳ 1. Khái quát nội dung tài liệu tự học Toán 9 – Nguyễn Chín Em (Tập 1): PHẦN I . ĐẠI SỐ Chương 1 . Căn bậc hai, căn bậc ba. 1. Căn bậc hai. A. Tóm tắt lý thuyết. 1. Căn bậc hai của một số. 2. So sánh các căn bậc hai số học. B. Phương pháp giải toán. 2. Căn thức bậc hai và hằng đẳng thức √A^2 = |A|. A. Tóm tắt lí thuyết. B. Các dạng toán. 1. Phá dấu trị tuyệt đối. 2. Điều kiện để √A có nghĩa. 3. Sử dụng hằng đẳng thức √A^2 = |A|. 4. Phương trình – bất phương trình. C. Bài tập tự luyện. 3. Liên hệ giữa phép nhân và phép khai phương. A. Tóm tắt lí thuyết. 1. Định lí. 2. Khai phương một tích. 3. Nhân các căn thức bậc hai. B. Các dạng toán. C. Bài tập tự luyện. 4. Liên hệ giữa phép chia và phép khai phương. A. Tóm tắt lí thuyết. B. Dạng toán. 1. Khai phương một thương. 2. Chia hai căn thức bậc hai. C. Phương pháp giải toán. D. Bài tập tự luyện. 5. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. A. Tóm tắt lí thuyết. 1. Đưa một thừa số ra ngoài dấu căn. 2. Đưa một thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy dấu căn. 4. Trục căn thức ở mẫu. B. Các dạng toán. 1. Đưa một thừa số vào trong hoặc ra ngoài dấu căn. 2. Khử mẫu của biểu thức dưới dấu căn – phép nhân liên hợp. 3. Sử dụng các phép biến đổi căn thức bậc hai cho bài toán rút gọn và chứng minh đẳng thức. 4. Sử dụng các phép biến đổi căn thức bậc hai giải phương trình. C. Bài tập tự luyện. 6. Rút gọn biểu thức có chứa căn bậc hai. A. Tóm tắt lí thuyết. B. Các dạng toán. 1. Thực hiện phép tính rút gọn biểu thức có chứa căn bậc hai. 2. Giải phương trình. C. Bài tập tự luyện. 7. Căn bậc ba – căn bậc n. A. Tóm tắt lí thuyết. 1. Căn bậc ba. B. Phương pháp giải toán. 1. Thực hiện các phép tính với căn bậc 3 và bậc n. 2. Khử mẫu chứa căn bậc ba. 3. Giải phương trình chứa căn bậc ba. C. Bài tập tự luyện. Chương 2 . Hàm số bậc nhất. 1. Nhắc lại và bổ sung khái niệm về hàm số. A. Tóm tắt lí thuyết. 1. Khái niệm hàm số và đồ thị. 2. Tập xác định của hàm số. 3. Hàm số đồng biến, nghịch biến. B. Các dạng toán. 1. Sự xác định của một hàm số. 2. Tìm tập xác định của hàm số. 3. Xét tính chất biến thiên của hàm số. C. Bài tập tự luyện. 2. Hàm số bậc nhất. A. Tóm tắt lý thuyết. 1. Định nghĩa. B. Phương pháp giải toán. C. Bài tập luyện tập. 3. Đồ thị của hàm số bậc nhất. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số y = ax với a khác 0. 2. Đồ thị của hàm số y = ax + b với a khác 0. 3. Cách vẽ đồ thị hàm số bậc nhất. B. Phương pháp giải toán. C. Bài tập luyện tập. 4. Đường thẳng song song và đường thẳng cắt nhau. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 5. Hệ số góc của đường thẳng. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. 1. Hệ số góc của đường thẳng. 2. Lập phương trình đường thẳng biết hệ số góc. C. Bài tập tự luyện. [ads] PHẦN II . HÌNH HỌC Chương 1 . Hệ thức lượng trong tam giác vuông. 1. Một số hệ thức về cạnh và đường cao của tam giác vuông. A. Tóm tắt lí thuyết. 1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. 2. Một số hệ thức liên quan tới đường cao. B. Phương pháp giải toán. 1. Giải các bài toán định lượng. 2. Giải các bài toán định tính. C. Bài tập tự luyện. 2. Tỉ số lượng giác. A. Tóm tắt lí thuyết. 1. Tỉ số lượng giác. 2. Giá trị lượng giác của các cung đặc biệt. 3. Hàm số lượng giác của hai góc phụ nhau. B. Phương pháp giải toán. 1. Giải các bài toán định lượng. 2. Giải các bài toán định tính. C. Bài tập tự luyện. Chương 2 . Đường tròn. 1. Sự xác định đường tròn – tính chất đối xứng của đường tròn. A. Tóm tắt lí thuyết. 1. Nhắc lại về đường tròn. 2. Cách xác định đường tròn. 3. Tâm đối xứng – trục đối xứng. B. Các dạng toán. 1. Chứng minh nhiều điểm cùng nằm trên một đường tròn. 2. Quỹ tích điểm là một đường tròn. 3. Dựng đường tròn. C. Bài tập tự luyện. 2. Đường kính và dây cung của đường tròn. A. Tóm tắt lí thuyết. 1. So sánh độ dài của đường kính và dây. 2. Quan hệ vuông góc giữa đường kính và dây. B. Phương pháp giải toán. 1. Giải bài toán định tính và định lượng. 2. Giải bài toán dựng hình. 3. Giải bài toán quỹ tích. C. Bài tập rèn luyện. 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 4. Vị trí tương đối của đường thẳng và đường tròn. A. Tóm tắt lý thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 5. Tiếp tuyến của đường tròn. A. Tóm tắt lý thuyết. 1. Các tính chất của tiếp tuyến. B. Phương pháp giải toán. 1. Dựng tiếp tuyến của đường tròn. 2. Giải bài toán định tính và định lượng. 3. Chứng minh một đường thẳng là tiếp tuyến của đường tròn. 4. Sử dụng tính chất tiếp tuyến để tìm quỹ tích. C. Bài tập tự luyện. 6. Tính chất của hai tiếp tuyến cắt nhau. A. Tóm tắt lý thuyết. 1. Đường tròn nội tiếp tam giác. 2. Đường tròn bàng tiếp tam giác. B. Phương pháp giải toán. C. Bài tập luyện tập. D. Hướng dẫn – đáp số. 7. Vị trí tương đối của hai đường tròn. A. Tóm tắt lý thuyết. 1. Hai đường tròn có hai điểm chung. 2. Hai đường tròn chỉ có một điểm chung. 3. Hai đường tròn không có điểm chung. 4. Một số tính chất. B. Phương pháp giải toán. C. Bài tập luyện tập.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề đồ thị của hàm số y ax + b (a khác 0)
Tài liệu gồm 23 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đồ thị của hàm số y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số bậc nhất. 2. Cách vẽ đồ thị hàm số bậc nhất y = ax + b (a khác 0). 3. Chú ý. B. Bài tập và các dạng toán. Dạng 1 : Vẽ đồ thị hàm số bậc nhất. Dạng 2 : Tìm tọa độ giao điểm của hai đường thẳng. Cách giải: Cho hai đường thẳng d y ax b và d y ax b. Để tìm tọa độ giao điểm của d và d’, ta làm như sau: Cách 1: Dùng phương pháp đồ thị (thường sử dụng trong trường hợp d và d’ cắt nhau tại điểm có tọa độ nguyên). – Vẽ d và d’ trên cùng một hệ trục tọa độ. – Xác định tọa độ giao điểm trên hình vẽ. – Chứng tỏ tọa độ giao điểm đó cùng thuộc d và d’. Cách 2: Dùng phương pháp đại số. – Xét phương trình hoành độ giao điểm của d và d’: ax b a x b. – Từ phương trình hoành độ giao điểm, tìm được x và thay vào phương trình của d (hoặc d’) để tìm y. – Kết luận tọa độ giao điểm của d và d’. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Cách giải: Chú ý: Ba đường thẳng đồng quy là ba đường thẳng phân biệt và cùng đi qua 1 điểm. Để xét tính đồng quy của ba đường thẳng (phân biệt) cho trước, ta làm như sau: + Tìm tọa độ giao điểm của 2 trong 3 đường thẳng đã cho. + Kiểm tra xem nếu giao điểm vừa tìm được thuộc đường thẳng còn lại thì kết luận ba đường thẳng đó đồng quy. Dạng 4 : Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua O. Cách giải: Để tính khoảng cách từ O đến đường thẳng d (không đi qua O) ta làm như sau: Bước 1: Tìm A B lần lượt là giao điểm của d với Ox và Oy. Bước 2: Gọi H là hình chiếu vuông góc của O trên d. Khi đó: 222 1 11 OH OA OB. Dạng 5 : Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số m. Cách giải: 1. Khái niệm điểm cố định: Điểm Mxy là điểm cố định của (d y ax b) (a b phụ thuộc vào tham số m a 0) khi và chỉ khi điểm M luôn thuộc (d) với mọi điều kiện của tham số m. Hoặc tương đương với điều kiện: 0 0 y ax b với mội điều kiện của tham số. 2. Cách tìm điểm cố định. Gọi Ix y là điểm cố định của 0 d y ax b m. Biến đổi 0 0 y ax b về dạng Ax y m Bx y hoặc 2 0 0 Ax y m Bx y m Cx y. Từ đó tìm được 0 0 x y rồi kết luận. 3. Chú ý: Cách tính khoảng cách từ Ax y đến Bx y trên hệ trục tọa độ Oxy 2 2 12 12 AB y y x. Dạng 6 : Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất. Cách giải: Cho đường thẳng (d y ax b) phụ thuộc tham số m. Muốn tìm m để khoảng cách từ O đến d là lớn nhất, ta có thể làm theo một trong hai cách sau. Cách 1: Phương pháp hình học. – Gọi A B lần lượt là giao điểm của d với Ox và Oy; H là hình chiếu vuông góc của O trên d. – Ta có khoảng cách từ O đến d là OH và được tính bởi công thức sau: 222 1 11 OH OB OC. – Từ đó tìm điều kiện của m để OH đạt giá trị lớn nhất. Cách 2: Dùng phương pháp điểm cố định. – Tìm được I là điểm cố định mà d luôn đi qua. – Gọi H là hình chiếu vuông góc của O trên d OH OI hằng số d ⇒ OH OI. – Ta có: OH OI d max là đường thẳng qua I và vuông góc với OI. Từ đó tìm được tham số m. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề hàm số bậc nhất
Tài liệu gồm 17 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hàm số bậc nhất trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm: Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b, trong đó a và b là hai số đã cho và a ≠ 0. Nếu b = 0 thì hàm số có dạng y = ax. 2. Các tính chất của hàm số bậc nhất. – Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R. – Hàm số bậc nhất: + Đồng biến trên R khi a > 0. + Nghịch biến trên R khi a < 0. B. Bài tập và các dạng toán. Dạng 1 : Nhận dạng hàm số bậc nhất. Cách giải: Hàm số bậc nhất là hàm số có dạng: y = ax + b (a ≠ 0). Dạng 2 : Xét tính đồng biến và nghịch biến của hàm số bậc nhất. Cách giải: Xét hàm số bậc nhất y = ax + b (a ≠ 0). + Đồng biến trên R khi a > 0. + Nghịch biến trên R khi a < 0. Dạng 3 : Giá trị của hàm số. Cách giải: Để tính giá trị của hàm số y = f(x) tại x = a ta thay x = a vào f(x) và viết là f(a). BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề hệ số góc của đường thẳng y ax + b (a khác 0)
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ số góc của đường thẳng y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Tìm hệ số góc của đường thẳng. Cách giải: Sử dụng các kiến thức liên quan đến vị trí tương đối giữa hai đường thẳng và hệ số góc của đường thẳng. – Hai đường thẳng song song có hệ số góc bằng nhau. – Đường thẳng y = ax + b (a > 0) tạo với tia Ox một góc α thì a = tan α. Dạng 2 : Xác định góc tạo bởi đường thẳng và tia Ox. Cách giải: Để xác định góc giữa đường thẳng (d) và tia Ox, ta làm như sau: Cách 1: Vẽ (d) trên mặt phẳng tọa độ và sử dụng tỉ số lượng giác của tam giác vuông một cách phù hợp. Cách 2: Gọi α là góc tạo bởi tia Ox và (d). Ta có: – Nếu α < 90 thì a > 0 và a = tan α. – Nếu α > 90 thì a < 0 và a = -tan (180 – α). Dạng 3 : Lập phương trình đường thẳng biết hệ số góc. Cách giải: Gọi phương trình đường thẳng cần tìm là (d): y = ax + b. Nếu (d) đi qua A(x0;y0) và biết hệ số góc thì ta thay tọa độ A(x0;y0) vào (d), từ đó tìm được b và (d). BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề nhắc lại và bổ sung các khái niệm về hàm số
Tài liệu gồm 24 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề nhắc lại và bổ sung các khái niệm về hàm số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm hàm số. a) Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến số. b) Hàm số có thể cho bằng bảng hoặc công thức. c) Khi y là hàm số của x, ta có thể viết: y f x y gx. d) Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là hàm hằng. 2. Giá trị của hàm số, điều kiện xác định của hàm số. – Giá trị của hàm số f x tại điểm 0 x kí hiệu là: y fx 0 0. – Điều kiện xác định của hàm số f x là tất cả các giá trị của x sao cho biểu thức f x có nghĩa. 3. Đồ thị của hàm số. – Đồ thị của hàm số y fx là tập hợp tất cả các điểm M xy trong mặt phẳng tọa độ Oxy sao cho x y thỏa mãn hệ thức: y fx. – Điểm Mx y 0 0 thuộc đồ thị hàm số y fx 0 0 ⇔ y fx. 4. Hàm số đồng biến, hàm số nghịch biến. Cho hàm số: y fx xác định với x R. – Nếu giá trị của x tăng lên mà giá trị y fx tương ứng cũng tăng lên thì hàm số y fx được gọi là đồng biến trên R. – Nếu giá trị của biến x tăng lên mà giá trị của y fx tương ứng giảm đi thì hàm số gọi là nghịch biến trên R. B. Bài tập và các dạng toán. Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Tìm điều kiện xác định của hàm số. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ Oxy. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.