Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề lớp 10 môn Toán ôn thi vào

Nội dung Các chuyên đề lớp 10 môn Toán ôn thi vào Bản PDF - Nội dung bài viết Các chuyên đề lớp 10 môn Toán ôn thi vào Các chuyên đề lớp 10 môn Toán ôn thi vào Được biên soạn từ 190 trang tư liệu, các chuyên đề lớp 10 môn Toán không chỉ giúp học sinh ôn thi hiệu quả mà còn giúp họ rèn luyện kỹ năng giải các bài toán một cách linh hoạt. A. Các bài toán rút gọn căn thức: - Dạng 1: Biểu thức dưới dấu căn là một số thực dương. - Dạng 2: Sử dụng hằng đẳng thức √A^2 = |A|. - Dạng 3: Biểu thức dưới dấu căn đưa được về hằng đẳng thức √A^2 = |A|. - Dạng 4: Rút gọn tổng hợp bằng cách sử dụng trục căn thức, hằng đẳng thức, phân tích thành nhân tử. - Dạng 5: Bài toán chứa ẩn dưới dấu căn và các ý toán phụ. B. Các bài toán giải hệ phương trình: - Giải hệ phương trình và một số ý phụ. - Giải hệ phương trình bậc cao. C. Giải bài toán bằng cách lập hệ phương trình: - Dạng 1: Toán về quan hệ số. - Dạng 2: Toán chuyển động. - Dạng 3: Toán về năng suất, khối lượng công việc, phần trăm. - Dạng 4: Toán có nội dung hình học. - Dạng 5: Các dạng toán khác. D. Giải bài toán bằng cách lập phương trình bậc hai: - Dạng 1: Toán về quan hệ số. - Dạng 2: Toán chuyển động. - Dạng 3: Toán về năng suất, khối lượng công việc, phần trăm. - Dạng 4: Toán có nội dung hình học. - Dạng 5: Các dạng toán khác. E. Hàm số bậc nhất: F. Hàm số bậc hai: - Sự tương giao giữa đường thẳng và đồ thị hàm số bậc hai. G. Phương trình bậc hai một ẩn, hệ thức Vi-et và ứng dụng: - Dạng 1: Giải phương trình và phương trình quy về phương trình bậc hai. - Dạng 2: Hệ thức Vi-et và ứng dụng. - Dạng 3: Phương trình chứa tham số. H. Bất đẳng thức: - Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên. - Kỹ thuật chọn điểm rơi trong bài toán cực trị đạt được tại tâm.

Nguồn: sytu.vn

Đọc Sách

Tài liệu luyện thi vào môn Toán phần Hình học Vũ Xuân Hưng
Nội dung Tài liệu luyện thi vào môn Toán phần Hình học Vũ Xuân Hưng Bản PDF - Nội dung bài viết Tài liệu luyện thi vào môn Toán phần Hình học của thầy Vũ Xuân Hưng Tài liệu luyện thi vào môn Toán phần Hình học của thầy Vũ Xuân Hưng Tài liệu luyện thi này bao gồm 122 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng. Trong tài liệu, thầy Hưng tổng hợp kiến thức quan trọng cần nhớ, các dạng bài tập và hướng dẫn giải chi tiết. Tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao về các chủ đề Hình học phẳng ở bậc trung học cơ sở. Đây sẽ là nguồn tài liệu hữu ích giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Phần Chuyên đề 7 - Hình học phẳng: A. Kiến thức cần nhớ: Hệ thức lượng trong tam giác vuông. Các tỉ số lượng giác của góc nhọn trong tam giác vuông. Góc và đường tròn. B. Các dạng bài tập cơ bản: Dạng Toán lớp 1: Chứng minh tứ giác nội tiếp đường tròn. Dạng Toán lớp 2: Chứng minh tứ giác đã cho là hình bình hành, hình thoi, hình chữ nhật, hình vuông. Dạng Toán lớp 3: Chứng minh đường thẳng là tiếp tuyến của đường tròn. Dạng Toán lớp 4: Chứng minh ba điểm thẳng hàng. Dạng Toán lớp 5: Chứng minh tỉ lệ độ dài đoạn thẳng. Dạng Toán lớp 6: Chứng minh đường thẳng là tiếp tuyến của đường tròn. Đặc biệt, tài liệu còn bao gồm tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán, giúp học sinh ôn tập kỹ lưỡng và tự tin trước kỳ thi sắp tới. Đừng bỏ lỡ cơ hội nâng cao kiến thức và kỹ năng giải bài tập của mình!
Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy
Nội dung Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Bản PDF - Nội dung bài viết Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Bộ tài liệu này bao gồm 80 trang, được biên soạn bởi thầy giáo Nguyễn Công Lợi, hướng dẫn phương pháp và chọn lọc các bài toán chứng minh ba điểm thẳng hàng - ba đường thẳng đồng quy. Đây là loại bài toán thường gặp trong các bài toán hình học với nhiều sắc thái và biểu cảm khác nhau.
Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng
Nội dung Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng Bản PDF - Nội dung bài viết Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân HưngCHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAICHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng là tài liệu tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải từ cơ bản đến nâng cao của chủ đề Đại số bậc THCS. Tài liệu gồm 141 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAI I – KIẾN THỨC CẦN NHỚ: Định nghĩa căn bậc hai. Các công thức vận dụng. Định nghĩa căn bậc ba. Tính chất của căn bậc ba. II – CÁC DẠNG BÀI TẬP CƠ BẢN: Dạng 1: Tìm điều kiện để biểu thức có nghĩa. Dạng 2: Căn bậc hai số học. Dạng 3: Tính giá trị của biểu thức. Dạng 4: Phân tích đa thức thành nhân tử. ... (còn nhiều dạng bài tập khác) III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT I – KIẾN THỨC CẦN NHỚ: Hàm số bậc nhất. Khái niệm hàm số bậc nhất. Tính chất. ... II – CÁC DẠNG BÀI TẬP CƠ BẢN: Dạng 1: Xác định hàm số đã cho là hàm đồng biến – nghịch biến. Dạng 2: Vẽ đồ thị của hàm số bậc nhất. ... (còn nhiều dạng bài tập khác) III – BÀI TẬP TỰ LUYỆN. Đồng hành cùng học sinh trong việc ôn tập và chuẩn bị cho kỳ thi tuyển sinh, tài liệu luyện thi của thầy giáo Vũ Xuân Hưng sẽ giúp họ nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Các bài toán chứng minh cực trị hình học
Nội dung Các bài toán chứng minh cực trị hình học Bản PDF - Nội dung bài viết Cùng khám phá bài toán chứng minh cực trị hình học! Cùng khám phá bài toán chứng minh cực trị hình học! Tài liệu chứa 50 trang với hướng dẫn chi tiết về cách giải các bài toán chứng minh cực trị hình học, loại dạng toán thường gặp trong các bài tập. Đây sẽ là nguồn thông tin hữu ích giúp bạn nắm vững phương pháp giải và áp dụng chúng một cách hiệu quả.