Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào môn Toán năm 2022 2023 trường THCS Lệ Chi Hà Nội

Nội dung Đề thi thử vào môn Toán năm 2022 2023 trường THCS Lệ Chi Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2022-2023 trường THCS Lệ Chi Hà Nội Đề thi thử vào môn Toán năm 2022-2023 trường THCS Lệ Chi Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 của trường THCS Lệ Chi, huyện Gia Lâm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 16 tháng 04 năm 2022. Hãy cùng chúng tôi tìm hiểu chi tiết về đề thi này. Trích dẫn một số câu hỏi từ đề thi: 1. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch hai tổ được giao sản xuất 500 thiết bị y tế. Thực tế khi sản xuất tổ 1 đã làm vượt mức 10% và tổ 2 đã làm vượt mức 15% nên cả hai tổ đã làm được 560 thiết bị tế. Hỏi theo kế hoạch mỗi tổ được giao sản xuất bao nhiêu thiết bị y tế. 2. Một người thợ dùng một đoạn dây thép dài 50cm để uốn và hàn thành một đường tròn (phần nối hàn không đáng kể). Hãy tính đường kính của đường tròn đó. 3. Hình học: Cho đường tròn (O) đường kính AB. M là điểm trên cung AB sao cho MA < MB. C là một điểm thuộc đoạn OB (C khác O và B). Đường thẳng vuông góc với AB tại C cắt MB tại H và cắt tia AM tại điểm E. a) Chứng minh tứ giác AMHC nội tiếp. b) Chứng minh AM.AE = AB.AC. c) AH cắt BE tại điểm K. Từ E kẻ các tiếp tuyến EP và EQ với đường tròn (O) với P và Q là các tiếp điểm. Chứng minh đường tròn ngoại tiếp tam giác CMK đi qua điểm O và ba điểm P, H, Q thẳng hàng. Đây là một số câu hỏi thú vị và phong phú từ đề thi thử môn Toán trường THCS Lệ Chi. Hãy cùng nhau ôn tập và chuẩn bị kỹ càng cho kỳ thi sắp tới nhé!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào lớp 10 năm 2020 - 2021 môn Toán trường THPT Chu Văn An - Hà Nội
Chủ Nhật ngày 07 tháng 06 năm 2020, trường THPT Chu Văn An, thành phố Hà Nội tổ chức kỳ thi thử vào lớp 10 THPT năm học 2020 – 2021 môn Toán. Đề thi thử vào lớp 10 năm 2020 – 2021 môn Toán trường THPT Chu Văn An – Hà Nội gồm 01 trang với 10 bài toán dạng tự luận, mỗi câu tương ứng với 01 điểm, thời gian làm bài thi là 90 phút. Trích dẫn đề thi thử vào lớp 10 năm 2020 – 2021 môn Toán trường THPT Chu Văn An – Hà Nội : + Miếng kim loại thứ nhất nặng 880g, miếng kim loại thứ hai nặng 858g. Thể tích của miếng thứ nhất nhỏ hơn thể tích của miếng thứ hai là 10cm, nhưng khối lượng riêng của miếng thứ nhất lớn hơn khối lượng riêng của miếng thứ hai là 1g/cm3. Tìm khối lượng riêng của mỗi miếng kim loại. [ads] + Một hình thang cân có đường chéo vuông góc với cạnh bên. Tính diện tích hình thang biết rằng đáy nhỏ dài 14cm, đáy lớn dài 50cm. + Không dùng máy tính cầm tay hoặc bảng giá trị lượng giác, hãy sắp xếp các giá trị lượng giác sau theo thứ tự tăng dần: sin 20°, cos 20°, sin 55°, cos 40°, tan70°.
Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở GDĐT Khánh Hòa
Tài liệu gồm 32 trang, được tổng hợp bởi các tác giả: Huỳnh Kim Linh, Nguyễn Thu Trang, Phạm Hoài, Lê Hoàng Ngọc Đức, Trần Đức An, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Khánh Hòa trong vòng 20 năm gần đây, từ năm học 2000 – 2001 đến năm học 2019 – 2020. 1. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2000 – 2001 sở GD&ĐT Khánh Hòa. 2. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2001 – 2002 sở GD&ĐT Khánh Hòa. 3. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2002 – 2003 sở GD&ĐT Khánh Hòa. 4. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2003 – 2004 sở GD&ĐT Khánh Hòa. 5. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2004 – 2005 sở GD&ĐT Khánh Hòa. 6. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2005 – 2006 sở GD&ĐT Khánh Hòa. 7. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2006 – 2007 sở GD&ĐT Khánh Hòa. 8. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2007 – 2008 sở GD&ĐT Khánh Hòa. 9. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2008 – 2009 sở GD&ĐT Khánh Hòa. [ads] 10. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2009 – 2010 sở GD&ĐT Khánh Hòa. 11. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2010 – 2011 sở GD&ĐT Khánh Hòa. 12. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2011 – 2012 sở GD&ĐT Khánh Hòa. 13. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2012 – 2013 sở GD&ĐT Khánh Hòa. 14. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2013 – 2014 sở GD&ĐT Khánh Hòa. 15. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2014 – 2015 sở GD&ĐT Khánh Hòa. 16. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2015 – 2016 sở GD&ĐT Khánh Hòa. 17. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2016 – 2017 sở GD&ĐT Khánh Hòa. 18. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2017 – 2018 sở GD&ĐT Khánh Hòa. 19. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2018 – 2019 sở GD&ĐT Khánh Hòa. 20. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 sở GD&ĐT Khánh Hòa.
Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở GDĐT Hòa Bình
Tài liệu gồm 39 trang, được tổng hợp bởi các tác giả: Lưu Công Hoàn, Trần Thu Hà, Lê Đức Thọ, Trương Hữu Thanh, Bùi Văn Vịnh, Đào Tuấn Anh, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Hòa Bình trong vòng 20 năm gần đây, từ năm học 2000 – 2001 đến năm học 2019 – 2020. 1. Đề tuyển sinh vào lớp 10 môn Toán năm học 2000 – 2001 sở GD&ĐT Hòa Bình. 2. Đề tuyển sinh vào lớp 10 môn Toán năm học 2001 – 2002 sở GD&ĐT Hòa Bình. 3. Đề tuyển sinh vào lớp 10 môn Toán năm học 2002 – 2003 sở GD&ĐT Hòa Bình. 4. Đề tuyển sinh vào lớp 10 môn Toán năm học 2003 – 2004 sở GD&ĐT Hòa Bình. 5. Đề tuyển sinh vào lớp 10 môn Toán năm học 2004 – 2005 sở GD&ĐT Hòa Bình. 6. Đề tuyển sinh vào lớp 10 môn Toán năm học 2005 – 2006 sở GD&ĐT Hòa Bình. 7. Đề tuyển sinh vào lớp 10 môn Toán năm học 2006 – 2007 sở GD&ĐT Hòa Bình. 8. Đề tuyển sinh vào lớp 10 môn Toán năm học 2007 – 2008 sở GD&ĐT Hòa Bình. 9. Đề tuyển sinh vào lớp 10 môn Toán năm học 2008 – 2009 sở GD&ĐT Hòa Bình. 10. Đề tuyển sinh vào lớp 10 môn Toán năm học 2009 – 2010 sở GD&ĐT Hòa Bình. [ads] 11. Đề tuyển sinh vào lớp 10 môn Toán năm học 2010 – 2011 sở GD&ĐT Hòa Bình. 12. Đề tuyển sinh vào lớp 10 môn Toán năm học 2011 – 2012 sở GD&ĐT Hòa Bình. 13. Đề tuyển sinh vào lớp 10 môn Toán năm học 2012 – 2013 sở GD&ĐT Hòa Bình. 14. Đề tuyển sinh vào lớp 10 môn Toán năm học 2013 – 2014 sở GD&ĐT Hòa Bình. 15. Đề tuyển sinh vào lớp 10 môn Toán năm học 2014 – 2015 sở GD&ĐT Hòa Bình. 16. Đề tuyển sinh vào lớp 10 môn Toán năm học 2015 – 2016 sở GD&ĐT Hòa Bình. 17. Đề tuyển sinh vào lớp 10 môn Toán năm học 2016 – 2017 sở GD&ĐT Hòa Bình. 18. Đề tuyển sinh vào lớp 10 môn Toán năm học 2017 – 2018 sở GD&ĐT Hòa Bình. 19. Đề tuyển sinh vào lớp 10 môn Toán năm học 2018 – 2019 sở GD&ĐT Hòa Bình. 20. Đề tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020 sở GD&ĐT Hòa Bình.
Đề thi thử Toán tuyển sinh lớp 10 năm 2020 - 2021 trường Phan Huy Chú - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán tuyển sinh lớp 10 THPT năm học 2020 – 2021 trường THPT Phan Huy Chú, quận Đống Đa, thành phố Hà Nội; đề thi được biên soạn theo dạng tự luận với 01 trang và 05 bài toán, thời gian làm bài thi là 90 phút. Trích dẫn đề thi thử Toán tuyển sinh lớp 10 năm 2020 – 2021 trường Phan Huy Chú – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai tỉnh A và B là 120 km. Hai người đi xe máy cùng khởi hành một lúc đi từ A đến B với vận tốc bằng nhau. Sau khi đi được 1 giờ thì xe của người thứ nhất bị hỏng nên phải dừng lại sửa xe 14 phút, còn người thứ hai tiếp tục đi với vận tốc ban đầu. Sau khi sửa xe xong, người thứ nhất đi với vận tốc nhanh hơn trước 10 km/h nên đã đến B cùng lúc với người thứ hai. Tính vận tốc hai người đi lúc đầu. [ads] + Cho tam giác ABC có ba góc nhọn. Gọi D, E, F lần lượt là chân đường cao hạ từ A, B, C của tam giác. Gọi P là giao điểm của EF và AD. 1) Chứng minh bốn điểm A, F, D, C cùng thuộc một đường tròn. 2) Chứng minh rằng PF.DE = PE.DF. 3) Gọi I là trung điểm của đoạn thẳng BC. Hình chiếu của I lên các đường FD, FE lần lượt là K, H. Chứng minh rằng FDE = FIE và đường thẳng KH song song với đường thẳng AD. + Cho biểu thức P = a^2.b + b^2.c + c^2.a với a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P.