Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán lần 2 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội

Ngày … tháng 05 năm 2020, trường THCS và THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021 lần thi thứ hai. Đề thi thử vào lớp 10 môn Toán lần 2 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội gồm 05 bài toán dạng tự luận, đề bám sát cấu trúc đề tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo Hà Nội những năm gần đây. Trích dẫn đề thi thử vào lớp 10 môn Toán lần 2 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Cho đường tròn (O;R) và dây cung BC = R√3 cố định. Một điểm A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, AM là đường kính của (O). Kẻ các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh các tứ giác BCEF, AEHF nội tiếp. b) Chứng minh tứ giác BHCM là hình bình hành và tính độ dài của đoạn AH. c) Kẻ DP vuông góc với BE tại P, đường thẳng qua P và vuông góc với đường kính AM cắt CF tại Q. Chứng minh rằng PQ ≤ HD. [ads] + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội xe theo kế hoạch chở hết 200 tấn hàng trong một số ngày quy định. Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian quy định 1 ngày và chở thêm được 25 tấn. Tính thời gian đội chở hết hàng theo kế hoạch. + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2(m – 3)x + 2m – 5. a) Khi m = 4 , hãy tìm tọa độ giao điểm của (P) và (d). b) Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A, B nằm khác phía của trục Oy sao cho tam giác OAB vuông tại O. 3. Tìm m để phương trình sau có bốn nghiệm phân biệt x^4 – (3m – 2)x^2 + 3m – 3 = 0.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Hà Nội
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023-2024 sở GD&ĐT Hà Nội Đề tuyển sinh môn Toán năm 2023-2024 sở GD&ĐT Hà Nội Chào đón quý thầy cô và các em học sinh! Đến với chúng tôi, quý vị sẽ được giới thiệu về đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2023-2024 tại sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi này dự kiến diễn ra vào Chủ Nhật ngày 11 tháng 06 năm 2023, với đề thi đầy đủ đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong Đề tuyển sinh lớp 10 môn Toán năm 2023-2024 sở GD&ĐT Hà Nội: 1. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một phân xưởng cần làm xong 900 sản phẩm trong một số ngày quy định. Thực tế, mỗi ngày phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm cần làm theo kế hoạch. Sau khi làm xong 900 sản phẩm 3 ngày sớm, hỏi phân xưởng cần làm bao nhiêu sản phẩm mỗi ngày? 2. Tính thể tích của một khối gỗ dạng hình trụ, khi bán kính đáy là 30cm và chiều cao là 120cm (lấy π ≈ 3,14). 3. Trong tam giác ABC có ba góc nhọn và đường tròn nội tiếp (O). Chứng minh rằng tứ giác SAOI nội tiếp và OAH bằng IAD. Tiếp tục với việc vẽ đường cao CE của tam giác ABC, gọi Q là trung điểm của đoạn BE. Chứng minh BQ.BA = BD.BI và CK song song với SO. Hãy tự tin và sẵn sàng đối mặt với những thách thức trong kỳ thi tuyển sinh sắp tới. Hãy ôn tập kỹ lưỡng và chúc quý thí sinh thành công!
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Thanh Hóa
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Thanh Hóa Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Thanh Hóa Sytu xin thông báo đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 - 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Đề tuyển sinh này mở đầu bằng việc yêu cầu tìm phương trình của đường thẳng (d) trong mặt phẳng tọa độ Oxy, với hệ số góc bằng 3 và đi qua điểm M(-1;2). Tiếp theo, đề bài đặt ra phương trình bậc hai và yêu cầu tìm các giá trị của tham số m để phương trình có hai nghiệm thỏa mãn một hệ thức phức tạp. Cuối cùng, đề bài đưa ra một bài toán về đường tròn và các điểm nằm trên nó, với nhiều yêu cầu khó khăn về tứ giác, giao điểm và đường thẳng. Những câu hỏi trong đề tuyển sinh đều đòi hỏi kiến thức và kỹ năng Toán cao cấp, đồng thời hướng đến khả năng suy luận và giải quyết vấn đề của thí sinh. Hy vọng rằng các em sẽ rèn luyện và chuẩn bị kỹ càng để vượt qua thách thức này và tiến xa trên con đường học vấn. Chúc quý thí sinh thành công!
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Đắk Lắk
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Giới thiệu đề tuyển sinh vào môn Toán năm 2023-2024 sở GD&ĐT Đắk Lắk Giới thiệu đề tuyển sinh vào môn Toán năm 2023-2024 sở GD&ĐT Đắk Lắk Sytu xin gửi đến quý thầy cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023-2024 của sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Dưới đây là một số câu hỏi đặc biệt được đưa ra trong đề thi này: 1. Cho một khu vườn hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Hãy tính diện tích của khu vườn, biết rằng nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi khu vườn không thay đổi. 2. Cho nửa đường tròn tâm O đường kính AB. Gọi M là điểm chính giữa cung AB, E là điểm trên cung AM. Lấy điểm F trên đoạn BE sao cho BF = AE. Gọi K là giao điểm của MO và BE. a) Chứng minh rằng EAOK là tứ giác nội tiếp. b) Chứng minh rằng AEMF vuông cân. c) Hai đường thẳng AE và OM cắt nhau tại D. Chứng minh rằng MK.ED = MD.EK. 3. Bút chì có dạng hình trụ, có đường kính đáy 8mm và chiều cao bằng 180mm. Phần thân của bút chì làm bằng gỗ, phần lõi làm bằng than chì với hình trụ có chiều cao bằng chiều dài bút và đường kính đáy là 2mm. Hãy tính thể tích phần gỗ của 2024 chiếc bút chì (sử dụng giá trị pi = 3,14).
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đà Nẵng
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đà Nẵng Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Đà Nẵng Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Đà Nẵng Xin chào quý thầy cô và các em học sinh! Dưới đây là đề chính thức của kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023-2024 dành cho thí sinh muốn vào trường THPT chuyên Lê Quý Đôn, Đà Nẵng. Đề thi bao gồm các câu hỏi sau: 1. Cho parabol (P): y = x^2 và đường thẳng (d): y = kx + 5 trên cùng một mặt phẳng tọa độ. Đường thẳng (d) cắt parabol (P) tại hai điểm A và B. Gọi C, D lần lượt là hình chiếu của A, B trên trục Ox. Hãy tính diện tích hình thang ABDC khi k = -4 và tìm tất cả các giá trị của k để AD và BC cắt nhau tại một điểm nằm trên đường tròn đường kính CD. 2. Cho tam giác nhọn ABC với AB < AC, nội tiếp đường tròn (O). Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở D. Đường tròn đường kính AD cắt đường tròn đường kính OD tại điểm E (khác D). Gọi F là giao điểm của đoạn thẳng OE và đường tròn (O). Chứng minh rằng ba điểm A, O, E thẳng hàng và CF là tia phân giác của góc BCE. Tiếp theo, chứng minh rằng OD đi qua trung điểm của đoạn thẳng GK. 3. Cho tam giác nhọn ABC có AB < AC < BC, đường tròn (O) nội tiếp tam giác ABC tiếp xúc với cạnh AB tại M. Lấy điểm E nằm giữa A và M. Trên cạnh AC, BC lần lượt lấy các điểm D, F sao cho AD = AE và BF = BE. Đường tròn ngoại tiếp tam giác DEF lần lượt cắt AB và BC tại G (khác E) và H (khác F). Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác DEF và các đường thẳng CM, ED, GH đồng quy. Hy vọng rằng đề thi sẽ giúp các em học sinh thử thách và phát huy tối đa khả năng của mình. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!