Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề ước chung và ước chung lớn nhất

Tài liệu gồm 20 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ước chung và ước chung lớn nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức : + Hiểu được khái niệm ước chung, ước chung lớn nhất, và khái niệm các số nguyên tố cùng nhau. + Nhận biết được giao của hai tập hợp. + Nhận biết được quan hệ giữa ước chung và ước chung lớn nhất. Kĩ năng : + Xác định được ước chung và ước chung lớn nhất của hai hay nhiều số tự nhiên lớn hơn 1. + Biết cách tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố. + Tìm được tập hợp các ước chung của các số đã cho thông qua tìm ước chung lớn nhất của chúng. + Vận dụng giải các dạng toán tìm ước chung và ước chung lớn nhất. + Chứng minh được hai hay nhiều số nguyên tố cùng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm ước chung. Tìm ước chung của hai số a và b: + Bước 1. + Bước 2. Dạng 2 : Tìm ước chung lớn nhất. Tìm ước chung lớn nhất của hai số a và b: – Cách 1: Tìm ƯC(a;b), chọn số lớn nhất trong tập hợp đó. – Cách 2: + Bước 1. Phân tích a và b ra thừa số nguyên tố. + Bước 2. Chọn ra các thừa số nguyên tố chung. + Bước 3. Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN cần tìm. Tìm ƯC(a;b) thông qua ước chung lớn nhất: + Bước 1. Tìm ƯCLN(a;b). + Bước 2. Liệt kê các ước của ƯCLN. Dạng 3 : Bài toán về tập hợp. Giao của hai tập hợp A và B là một tập hợp gồm các phần tử chung của hai tập đó. Dạng 4 : Chứng minh hai hay nhiều số là các số nguyên tố cùng nhau. Chứng minh a và b là hai số nguyên tố cùng nhau: + Bước 1. Giả sử d = ƯC(a;b). Suy ra a d và b d. + Bước 2. Áp dụng tính chất chia hết của một tổng (hiệu) để chứng minh d = 1. Suy ra ƯCLN(a;b) = 1. Kết luận a và b là hai số nguyên tố cùng nhau.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trung điểm của đoạn thẳng
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề trung điểm của đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được khái niệm trung điểm của đoạn thẳng. Kĩ năng: + Vận dụng được tính chất trung điểm của đoạn thẳng và công thức cộng độ dài hai đoạn thẳng để tính độ dài đoạn thẳng. + Chứng minh được một điểm là trung điểm của một đoạn thẳng. I. LÍ THUYẾT TRỌNG TÂM 1. Trung điểm của đoạn thẳng. Định nghĩa: Trung điểm M của đoạn thẳng AB là điểm nằm giữa A, B và cách đều A, B. 2. Cách vẽ trung điểm của đoạn thẳng. Cách 1. Vẽ theo độ dài. Để vẽ trung điểm M của đoạn thẳng AB a cm ta vẽ điểm M trên tia AB sao cho a AM cm 2. Cách 2. Gấp giấy. Gấp giấy sao cho điểm A trùng với điểm B. Nếp gấp cắt đoạn AB tại trung điểm M của AB. II. CÁC DẠNG BÀI TẬP Dạng 1 . Tính độ dài đoạn thẳng. Áp dụng tính chất trung điểm của đoạn thẳng và công thức cộng độ dài hai đoạn thẳng. + Nếu M là trung điểm của đoạn thẳng AB thì 2 AB MA MB. + Nếu điểm M nằm giữa hai điểm A và B thì MA MB AB. Dạng 2 . Chứng minh một điểm là trung điểm của một đoạn thẳng. Để chứng minh điểm M là trung điểm của đoạn thẳng AB ta cần chứng minh: Cách 1: + Điểm M nằm giữa A và B (hoặc AM MB AB). + MA = MB. Cách 2: Chứng minh 2 AB MA MB.
Chuyên đề đoạn thẳng và độ dài đoạn thẳng
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đoạn thẳng và độ dài đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được khái niệm đoạn thẳng, độ dài đoạn thẳng. Kĩ năng: + Đếm được số đoạn thẳng tạo thành từ các điểm cho trước. + Chỉ ra được tính thẳng hàng và điểm nằm giữa hai điểm. + Tính được độ dài đoạn thẳng sử dụng công thức cộng độ dài đoạn thẳng. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đoạn thẳng tạo thành từ các điểm cho trước. Dạng 2 : Xét tính thẳng hàng và điểm nằm giữa hai điểm còn lại. Điểm nằm giữa hai điểm: + Nếu OA và OB là hai tia đối nhau thì O nằm giữa A và B. + Nếu OA và OB là hai tia trùng nhau và OA OB thì A nằm giữa O và B. + Nếu MA MB AB thì M nằm giữa A và B và ngược lại. + Điểm M thuộc đoạn thẳng AB thì M nằm giữa A và B. Dạng 3 : Độ dài đoạn thẳng. Tính độ dài đoạn thẳng: Khi điểm M nằm giữa hai điểm A và B thì MA MB AB và ngược lại. Vẽ đoạn thẳng cho biết độ dài: + Vẽ đoạn thẳng trên tia: Trên tia Ox bao giờ cũng vẽ được một và chỉ một điểm M sao cho OM a (đơn vị độ dài). + Vẽ hai đoạn thẳng trên tia: Trên tia Ox vẽ hai đoạn thẳng OM a ON b. Nếu 0 a b thì điểm M nằm giữa hai điểm O và N.
Chuyên đề tia
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tia, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được tia, hai tia đối nhau, hai tia trùng nhau. Kĩ năng: + Vẽ được các tia thỏa mãn điều kiện cho trước. + Dựa vào khái niệm tia, xác định được điểm nằm giữa hai điểm còn lại. I. LÍ THUYẾT TRỌNG TÂM 1. Tia. Định nghĩa: Hình gồm điểm O và một phần đường thẳng bị chia ra bởi điểm O được gọi là một tia gốc O. 2. Hai tia đối nhau. Định nghĩa: Hai tia chung gốc Ox và Oy tạo thành đường thẳng xy được gọi là hai tia đối nhau. Nhận xét: Mỗi điểm trên đường thẳng là gốc chung của hai tia đối nhau. 3. Hai tia trùng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết tia, hai tia đối nhau, hai tia trùng nhau. Bài toán 1. Nhận biết tia. + Bước 1. Sử dụng khái niệm một tia để xác định các tia có trong hình. Xác định điểm gốc của tia và phần đường thẳng được chia bởi gốc. + Bước 2. Sử dụng một trong các cách để gọi tên tia. Bài toán 2. Xác định tia đối. + Bước 1. Xác định các điểm trên hình là gốc chung của hai tia đối. + Bước 2. Xác định các tia có chung gốc và tạo thành một đường thẳng. Liệt kê tên các cặp tia đối nhau. Bài toán 3. Xác định tia trùng nhau. + Bước 1. Sử dụng khái niệm về hai tia trùng nhau để xác định trên hình vẽ. + Bước 2. Kể tên các cặp tia trùng nhau. Dạng 2 : Vẽ các tia theo điều kiện cho trước. Dạng 3 : Xác định điểm nằm giữa hai điểm khác.
Chuyên đề đường thẳng đi qua hai điểm
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đường thẳng đi qua hai điểm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được tiên đề về đường thẳng đi qua hai điểm phân biệt. + Nhận biết được khái niệm hai đường thẳng cắt nhau, song song. Kĩ năng: + Vẽ được đường thẳng đi qua hai điểm. + Đếm được số đường thẳng trên hình vẽ cho trước. I. LÍ THUYẾT TRỌNG TÂM 1. Vẽ và đặt tên đường thẳng. Vẽ đường thẳng: + Vẽ đường thẳng đi qua hai điểm A và B. + Đặt cạnh thước đi qua hai điểm A và B. + Dùng bút chì vạch theo cạnh thước. Có một đường thẳng và chỉ một đường thẳng đi qua hai điểm A và B. Tên đường thẳng: Một đường thẳng có thể được đặt tên bằng: + Một chữ cái in thường. + Tên hai điểm thuộc đường thẳng đó. + Hai chữ cái in thường. 2. Đường thẳng trùng nhau, cắt nhau, song song. Hai đường trùng nhau: Hai đường thẳng AB và AC trùng nhau. Hai đường thẳng cắt nhau: Hai đường thẳng cắt nhau là hai đường thẳng có duy nhất một điểm chung. Hai đường thẳng AB và AC cắt nhau tại A. A là giao điểm của hai đường thẳng đó. Hai đường thẳng song song: Hai đường thẳng song song là hai đường thẳng không có điểm chung. Hai đường thẳng a và b không có điểm chung nào (dù có kéo dài mãi mãi về hai phía). Hai đường thẳng a và b song song với nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đường thẳng. Có một và chỉ một đường thẳng đi qua hai điểm phân biệt. Hai đường thẳng không trùng nhau được gọi là hai đường thẳng phân biệt. Dạng 2 : Giao điểm của hai đường thẳng cắt nhau. Giao điểm của hai đường thẳng cắt nhau là điểm chung của hai đường thẳng ấy.