Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 lần 2 năm 2019 - 2020 trường Lý Nhân Tông - Bắc Ninh

Thứ Bảy ngày 30 tháng 05 năm 2020, trường THPT Lý Nhân Tông, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 lần thứ hai năm học 2019 – 2020. Đề khảo sát chất lượng Toán 12 lần 2 năm học 2019 – 2020 trường Lý Nhân Tông – Bắc Ninh được biên soạn bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án. Trích dẫn đề khảo sát chất lượng Toán 12 lần 2 năm 2019 – 2020 trường Lý Nhân Tông – Bắc Ninh : + Xét khối chóp S.ABC có đáy là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cosα khi thể tích khối chóp S.ABC nhỏ nhất. + Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 6% / năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ nhận được số tiền nhiều hơn 100 triệu đồng bao gồm gốc và lãi? Giả định trong suốt thời gian gửi, lãi suất không đổi và người đó không rút tiền ra. A. 14 năm B. 12 năm C. 11 năm D. 13 năm. [ads] + Từ một tấm tôn hình chữ nhật kích thước 50 cm x 240 cm, người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50cm, theo hai cách sau (xem hình minh họa dưới đây): Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng. Cách 2: Cắt tấm tôn ban đầu thành hai tấm bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng. Kí hiệu V1 là thể tích của thùng gò được theo cách 1 và V2 là tổng thể tích của hai thùng gò được theo cách 2. Tính tỉ số V1/V2.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2016 môn Toán trường Trực Ninh - Nam Định lần 1
Đề thi thử THPT Quốc gia 2016 môn Toán trường Trực Ninh – Nam Định lần 1 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 9 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số phân thức hữu tỉ. Câu 2 a) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn cho trước. b) Tìm m để hàm số đạt cực tiểu tại điểm cho trước. Câu 3: a) Giải phương trình logarit bằng cách đưa về cùng cơ số. b) Giải phương trình lượng giác. Câu 4: Tính tích phân hàm chứa căn thức. Câu 5: Viết phương trình mặt phẳng (P) song song với trục Ox vuông góc với mặt phẳng (a) và tiếp xúc với mặt cầu (S). Câu 6: Lấy ngẫu nhiên một đề trong bộ đề trên. Tính xác suất để đề thi lấy ra là một đề thi tốt. Câu 7: Tính theo a thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách giữa A’ I và AC với I là trung điểm AB. Câu 8: Tìm tọa độ các điểm A, B là các đỉnh của hình chữ nhật ABCD. Câu 9: Giải hệ phương trình vô tỉ, có thể sử dụng phương pháp hàm số. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Bình Phước
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Bình Phước có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 8 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số phân thức hữu tỉ. Câu 2: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc 3 trên đoạn cho trước. Câu 3: a) Cho số phức z thỏa mãn điều kiện cho trước, yêu cầu tìm số phức w. b) Giải phương trình bậc 2 của logarit. Câu 4: Tính tích phân bằng phương pháp tích phân từng phần. Câu 5: Tìm toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d. Viết phương trình mặt cầu tâm M tiếp xúc với d. Câu 6: a) Tính giá trị của biểu thức lượng giác biết mối liên hệ giữa sina và cosa b) Bài toán tính xác suất. Câu 7: Tính thể tích hình chóp với đáy là hình thang cân và khoảng cách giữa 2 đường thẳng chéo nhau trong không gian. Câu 8: Tìm tọa độ các đỉnh của tam giác ABC và viết phương trình của đường tròn tâm I trong hình học tọa độ Oxy. Câu 9: a) Giải phương trình vô tỉ có chứa mẫu khá phức tạp. b) Bài toán thực tế trong kinh tế – sản xuất. Đây là một dạng bài mới đang được đưa ra mổ xẻ trong thời gian gần đây và hứa hẹn xuất hiện trong đề thi sắp tới vì tính ứng dụng vào thực tiễn của nó. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến dạng đối xứng giữa các biến, trong đó các biến là độ dài các cạnh của một tam giác.
Đề thi thử Quốc gia 2016 môn Toán trường THPT chuyên Vĩnh Phúc lần 5
Đề thi thử Quốc gia 2016 môn Toán trường THPT chuyên Vĩnh Phúc lần 5 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 7 trang: Câu 1: Khảo sát hàm đa thức bậc 3. Câu 2: Tìm miền giá trị của hàm số. Đây là 1 dạng câu hỏi khá mới lạ trong các đề thi thử. Câu 3: a) Bài tập số phức. b) Giải phương trình logarit bằng cách đưa về phương trình bậc 2. Câu 4: Tính tích phân bằng phương pháp đổi biến, một câu tích phân khá hay bởi không dễ để nhận ra biểu thức cần đặt. Câu 5: Viết phương trình mặt cầu và tìm tọa độ tiếp điểm. Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Bài toán tính xác suất chọn người. Câu 7: Tính thể tích hình chóp với đáy là hình thoi và khoảng cách giữa 2 đường thẳng chéo nhau trong không gian. Câu 8: Hình học tọa độ phẳng liên quan đến tam giác và đường tròn. Câu 9: Hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến dạng đối xứng giữa các biến, trong đó các biến là độ dài các cạnh của một tam giác.
Đề thi thử Quốc gia 2016 môn Toán trường Định Quán - Đồng Nai lần 1
Đề thi thử Quốc gia 2016 môn Toán trường THPT Định Quán – Đồng Nai lần 1 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát hàm số trùng phương. Câu 2: Tìm GTLN – GTNN trên đoạn. Câu 3: a) Giải phương trình logarit bằng phương pháp đặt ẩn phụ đưa về phương trình bậc 2. b) Tìm số phức bằng cách đặt z = a+bi hoặc có thể nhóm gộp để rút z. Câu 4: Tính tích phân gồm 2 tích phân nhỏ, trong đó 1 tích phân tính bằng phương pháp từng phần, 1 tích phân đổi biến Câu 5: Viết phương trình mặt cầu biết tâm và tiếp xúc với mặt phẳng cho trước, đây là dạng bài quen thuộc với R bằng khoảng cách từ tâm đến mặt phẳng. Câu 6: a) Tính giá trị của biểu thức lượng giác, trong đó chứa 2 góc lượng giác anpha và beta, yêu cầu biến đổi trước kh thay vào. b) Bài toán tính xác suất chọn bi Câu 7: Tính thể tích hình chóp tam giác với đáy là một tam giác vuông và khoảng cách giữa 2 đường thẳng chéo nhau trong không gian. Câu 8: Tìm tọa độ các đỉnh của tam giác ABC trong bài toán tam giác nội tiếp đường tròn. Câu 9: Hệ phương trình khá quen thuộc có thể giải bằng phương pháp hàm số, có thể thấy đây là phương pháp phổ biến trong chuỗi đề thi thử năm nay. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến dạng đối xứng giữa các biến.