Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2021 2022 phòng GD ĐT Chí Linh Hải Dương

Nội dung Đề thi thử Toán vào năm 2021 2022 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 năm 2021 – 2022 phòng GD&ĐT Chí Linh – Hải Dương Đề thi thử Toán vào lớp 10 năm 2021 – 2022 phòng GD&ĐT Chí Linh – Hải Dương Xin chào quý thầy, cô giáo và các em học sinh lớp 9. Trong bài viết này, chúng tôi xin giới thiệu đến bạn đề thi thử Toán vào lớp 10 năm 2021 – 2022 do phòng GD&ĐT Chí Linh – Hải Dương tổ chức. Đề thi bao gồm các câu hỏi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 phòng GD&ĐT Chí Linh – Hải Dương: + Một người thợ dự định may 1000 chiếc khẩu trang trong một thời gian nhất định. Nhờ tăng năng suất lao động, nên mỗi ngày người đó may thêm được 30 chiếc khẩu trang so với kế hoạch. Do đó, chẳng những đã may vượt mức 170 chiếc khẩu trang mà còn hoàn thành công việc sớm hơn dự định 1 ngày. Hỏi theo kế hoạch mỗi ngày người đó dự định may được bao nhiêu chiếc khẩu trang? + Cho phương trình 2x^2 + 6x + 6m = 0 (với m là tham số). Tìm m để phương trình đã cho có hai nghiệm x1 và x2 thỏa mãn: 3x1^2 + 2x1 + 1 = 2x1^2 + 12x1 + 72 = 0. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. Tia AD cắt đường tròn (O) ở K (với K khác A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M. a) Chứng minh tứ giác ACDF nội tiếp. b) AM cắt đường tròn (O) tại I (với I khác A). Chứng minh MC^2 = MI.MA và tam giác CMD cân. c) MD cắt BI tại N. Chứng minh ba điểm C, K, N thẳng hàng. Hy vọng rằng đề thi trên sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy, cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GDĐT Cà Mau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2021 – 2022 sở GD&ĐT Cà Mau; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Cà Mau : + Theo các chuyên gia về sức khỏe, người trưởng thành cần đi bộ từ 5000 bước mỗi ngày sẽ rất tốt cho sức khỏe. Để rèn luyện sức khỏe, anh Sơn và chị Hà đề ra mục tiêu mỗi ngày một người phải đi bộ ít nhất 6000 bước. Hai người cùng đi bộ ở công viên và thấy rằng, nếu cùng đi trong 2 phút thì anh Sơn bước nhiều hơn chị Hà 20 bước. Hai người cùng giữ nguyên tốc độ như vậy nhưng chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước. Hỏi mỗi ngày anh Sơn và chị Hà cùng đi bộ trong 1 giờ thì họ đã đạt được số bươc tối thiểu mà mục tiêu đề ra chưa? (Giả sử tốc độ đi bộ hằng ngày của hai người không đổi). + Cho phương trình: 2 2 x m x m m 2 1 4 7 0 (m là tham số). a) Tìm m để phương trình đã cho có nghiệm. b) Tìm m để phương trình đã cho có hai nghiệm âm phân biệt. + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O. Hai tiếp tuyến tại B và C của đường tròn O cắt nhau tại M, tia AM cắt đường tròn O tại điểm D. a) Chứng minh rằng tứ giác OBMC nội tiếp được đường tròn. b) Chứng minh 2 MB MD MA. c) Gọi E là trung điểm của đoạn thẳng AD; tia CE cắt đường tròn O tại điểm F. Chứng minh rằng: BF AM.
Đề thi vào 10 môn Toán cơ sở năm 2021 - 2022 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán cơ sở năm học 2021 – 2022 sở GD&ĐT Đồng Tháp; kỳ thi được diễn ra vào ngày 09 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán cơ sở năm 2021 – 2022 sở GD&ĐT Đồng Tháp : + Theo kế hoạch, một tổ trong xưởng may phải may xong 8400 chiếc khẩu trang trong một thời gian quy định. Do tình hình dịch bệnh Covid-19 diễn biến phức tạp, tổ đã quyết định tăng năng suất nên mỗi ngày tổ đã may được nhiều hơn 102 chiếc khẩu trang so với số khẩu trang phải may trong một ngày theo kế hoạch. Vì vậy, trước thời gian quy định 4 ngày, tổ đã may được 6416 chiếc khẩu trang. Hỏi số khẩu trang mà tổ phải may mỗi ngày theo kế hoạch là bao nhiêu? + Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài BC và đường cao AH. + Cho đường tròn (O). Từ một điểm M ở ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là hai tiếp điểm). a) Chứng minh MACB là tứ giác nội tiếp. b) Vẽ đường kính BK của đường tròn (O), H là điểm trên BK sao cho AH vuông góc BK. Điểm I là giao điểm của AH, MK. Chứng minh I là trung điểm của HA.
Đề thi vào 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Hùng Vương - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên Toán) năm học 2021 – 2022 trường THPT chuyên Hùng Vương – Gia Lai. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Hùng Vương – Gia Lai : + Cho đa thức f(x) = ax2 + bx + c (a khác 0). Tìm a, b, c biết f(x) – 2020 chia hết cho x – 1, f(x) + 2021 chia hết cho x + 1 và f(x) nhận giá trị bằng 2 khi x = 0. + Cho đường tròn (O) có đường kính AB cố định, I là một điểm thuộc đoạn OA (I khác O), qua I kẻ đường thẳng vuông góc với AB và cắt đường tròn (O) tại hai điểm phân biệt M và N. Gọi C là điểm thuộc cung lớn MN và E là giao điểm của AC với MN. a) Chứng minh tứ giác EIBC nội tiếp một đường tròn. b) Chứng minh AE.AC = AM2 và AE.AC – AI.IB = AI2. c) Gọi H, K, P lần lượt là hình chiếu của C lên đường thẳng BM, MN và BN. Xác định vị trí điểm C trên đường tròn (O) sao cho độ dài đoạn thẳng HK lớn nhất. + Cho hai số thực x, y không âm thỏa mãn x + y = 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = (5×2 + 7y)(5y2 + 7x) + 151xy.
Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GDĐT Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Lâm Đồng; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2021. Trích dẫn đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Lâm Đồng : + Một người dự định đi xe gắn máy từ A đến B với vận tốc không đổi. Nhưng thực tế vì có việc gấp, người đó đã tăng vận tốc thêm 5 km/h so với dự định nên đến B sớm hơn 15 phút. Tính vận tốc người đó dự định đi từ A đến B, biết quãng đường AB dài 70km. + Cho C là một điểm nằm trên nửa đường tròn tâm O đường kính AB (C khác A, C khác B). Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C, I là trung điểm của CH, J là trung điểm của DH và E là giao điểm của HD và BI. Chứng minh: HE.HD = HC2. + Hình nón có thể tích là 960 cm3 và chiều cao là 8 cm. Tính diện tích xung quanh của hình nón.