Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2023 - 2024 trường THPT Đông Sơn 1 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Đông Sơn 1, tỉnh Thanh Hóa. Đề thi được biên soạn theo cấu trúc trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án mã đề 001 – 002. Trích dẫn Đề thi HSG Toán 11 năm 2023 – 2024 trường THPT Đông Sơn 1 – Thanh Hóa : + Hằng ngày bạn Hùng đều đón bạn Minh đi học tại một vị trí trên lề đường thẳng đến trường. Minh đứng tại vị trí A cách lề đường một khoảng 50m để chờ Hùng. Khi nhìn thấy Hùng đạp xe đến địa điểm B, cách mình một đoạn 200m thì Minh bắt đầu đi bộ ra lề đường để bắt kịp xe. Vận tốc đi bộ Minh là 5 km h, vận tốc xe đạp của Hùng là 15km h. Hãy xác định vị trí C trên lề đường để hai bạn gặp nhau mà không bạn nào phải chờ người kia (làm tròn kết quả đến hàng phần mười). + Aladin nhặt được cây đèn thần, chàng miết tay vào cây đèn và gọi Thần đèn ra. Thần đèn cho chàng 3 điều ước. Aladin ước 2 điều đầu tiên tùy thích, nhưng điều ước thứ 3 của chàng là: “Ước gì ngày mai tôi lại nhặt được cây đèn và Thần cho tôi số điều ước gấp đôi số điều ước ngày hôm nay”. Thần đèn chấp thuận và mỗi ngày Aladin đều thực hiện theo quy tắc như trên: ước hết các điều đầu tiên và luôn chừa lại điều ước cuối cùng để kéo dài thỏa thuận với thần đèn cho ngày hôm sau. Hỏi sau 10 ngày gặp Thần đèn, Aladin ước tất cả bao nhiêu điều ước? + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết quỹ đạo của quả bóng là một cung Parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây), kể từ khi quả bóng được đá lên, h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1giây, nó đạt độ cao 8,5m và 2 giây sau khi đá nó lên, nó ở độ cao 6m. Sau bao lâu thì quả bóng sẽ chạm đất kể từ khi đá lên (Tính chính xác đến hàng phần trăm)?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG lớp 11 môn Toán lần 2 năm 2020 2021 trường THPT Đồng Đậu Vĩnh Phúc
Nội dung Đề thi HSG lớp 11 môn Toán lần 2 năm 2020 2021 trường THPT Đồng Đậu Vĩnh Phúc Bản PDF Đề thi HSG Toán lớp 11 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 02 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán lớp 11 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Một thợ thủ công muốn vẽ trang trí trên một hình vuông kích thước 4m x 4m, bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu và tô kín màu lên hai tam giác đối diện (như hình vẽ). Quá trình vẽ và tô theo qui luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ thủ công đó hoàn thành trang trí hình vuông như trên? Biết tiền nước sơn để sơn 1m2 là 50.000 đồng. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD, có đỉnh A(-3;1), đỉnh C nằm trên đường thẳng d: x – 2y – 5 = 0. Trên tia đối của tia CD lấy điểm E sao cho CE = CD, biết N(6;-2) là hình chiếu vuông góc của D lên đường thẳng BE. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. + Cho hình hộp ABCD.A’B’C’D’. Trên các đoạn thẳng AD’ và C’D lần lượt lấy hai điểm M, N sao cho đường thẳng MN song song với đường thẳng nối tâm của hình bình hành ABB’A’ và trung điểm của cạnh BC. Tính tỷ số MN/A’C. File WORD (dành cho quý thầy, cô):
Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bình Định
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bình Định Bản PDF Thứ Năm ngày 18 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Bình Định gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Lạng Sơn
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Giả sử P(x) = (1 + 3x)^n. Biết rằng a2 + a3 = 405(n – 1), tính giá trị của a6. + Cho tập hợp A = {0; 1; 2; 3; 4; 5; 6; 7}. Gọi S là tập hợp các số tự nhiên gồm 8 chữ số đôi một khác nhau lấy từ A. Tính xác suất để lấy được số tự nhiên mà tổng 4 chữ số đầu bằng tổng 4 chữ số cuối. + Cho hình chóp tam giác S.ABC có đáy là tam giác đều cạnh bằng 2a. Đường thẳng SA vuông góc với mặt phẳng (ABC). Gọi M là trung điểm của AB, H là hình chiếu vuông góc của C lên SB và góc tạo bởi đường thẳng AB và mặt phẳng (HCM) bằng 60°. a) Tính diện tích tam giác HCM. b) Tính sin của góc tạo bởi MH và SC.
Đề thi HSG lớp 11 môn Toán cấp trường năm 2020 2021 trường Liễn Sơn Vĩnh Phúc
Nội dung Đề thi HSG lớp 11 môn Toán cấp trường năm 2020 2021 trường Liễn Sơn Vĩnh Phúc Bản PDF Đề thi HSG Toán lớp 11 cấp trường năm học 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc dành cho học sinh THPT không chuyên, đề gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán lớp 11 cấp trường năm 2020 – 2021 trường Liễn Sơn – Vĩnh Phúc : + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là điểm nằm trên SB sao cho SM = 1/3.SB. a. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. b. E là một điểm thay đổi trên cạnh AC. Xác định vị trí điểm E để ME vuông góc với CD. + Xung quanh bờ ao của gia đình bác Nam trồng 20 cây chuối. Do không còn phù hợp bác muốn thay thế để trồng bưởi, lần đầu bác chặt ngẫu nhiên 4 cây. Tính xác suất để trong 4 cây bác Nam chặt không có hai cây nào gần nhau. + Cho a, b, c là độ dài 3 cạnh của một tam giác có chu vi bẳng 1. Tìm giá trị lớn nhất của biểu thức T.