Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Huy Tưởng - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Huy Tưởng, huyện Đông Anh, thành phố Hà Nội; đề thi hình thức tự luận 100% với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Huy Tưởng – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Hai tổ làm chung một công việc thì sau 6 giờ sẽ xong. Nếu Tổ I làm trong 5 giờ, Tổ II làm trong 2 giờ thì làm xong 8/15 công việc. Tính thời gian mỗi tổ làm riêng để xong công việc. + Cho Parabol (P): y = x2 và đường thẳng (d): y = 3x + m. a. Vẽ đồ thị (P) trên hệ trục tọa độ Oxy; tìm giao điểm của (d) và (P) bằng phương pháp đại số khi m = -2. b. Tìm m để đường thẳng (d) và Parabol (P) cắt nhau tại hai điểm phân biệt. + Cho đường tròn (O; R) và điểm P ở ngoài (O). Qua P kẻ các tiếp tuyến PA, PB với (O) trong đó A, B là các tiếp điểm. Đường thẳng PO cắt AB tại H và cắt cung lớn AB của đường tròn (O) tại C. Kẻ BE vuông góc AC tại E. Gọi M là trung điểm của BE. Tia CM cắt (O) tại điểm thứ hai là N a. Chứng minh tứ giác PAOB nội tiếp. b. Chứng minh HM // AC và HN vuông góc NB. c. Gọi giao điểm của BN và PC là K. Chứng minh K là trung điểm của đoạn thẳng PH.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 Toán 9 năm 2021 - 2022 trường Tạ Quang Bửu - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng giữa học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS và THPT Tạ Quang Bửu, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 03 năm 2022. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2021 – 2022 trường Tạ Quang Bửu – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Một cửa hàng có tổng cộng 28 chiếc tivi và tủ lạnh. Giá mỗi cái tủ lạnh là 15 triệu đồng, mỗi cái tivi là 30 triệu đồng. Nếu bán hết 28 cái tivi và tủ lạnh này chủ cửa hàng sẽ thu được 720 triệu đồng. Hỏi cửa hàng có bao nhiêu cái tivi và tủ lạnh? + Cho nửa đường tròn (O), đường kính AB. Lấy hai điểm C, M bất kỳ thuộc nửa đường tròn sao cho AC = CM (AC và CM khác MB). Gọi D là giao điểm của AC và BM; H là giao điểm của AM và BC. 1. Chứng minh: Tứ giác CHMD nội tiếp. 2. Chứng minh: DA.DC = DB.DM. 3. Tiếp tuyến tại A của đường tròn (O) cắt tia BC tại K. Chứng minh rằng: KD. Gọi Q là giao điểm của DH và AB. Chứng minh rằng: khi điểm C di chuyển trên nửa đường tròn sao cho AC = CM thì đường tròn ngoại tiếp CMQ luôn đi qua một điểm cố định. + Chọn đáp án đúng trong mỗi câu sau (học sinh ghi vào giấy thi phương án lựa chọn. Ví dụ: câu 1 chọn đáp án A, ghi là: 1A).