Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập phân thức đại số Toán 8 Kết Nối Tri Thức Với Cuộc Sống

Tài liệu gồm 101 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề phân thức đại số trong chương trình môn Toán 8 bộ sách Kết Nối Tri Thức Với Cuộc Sống, có đáp án và lời giải chi tiết. MỤC LỤC : Chương 6 . PHÂN THỨC ĐẠI SỐ 1. Bài 21 . PHÂN THỨC ĐẠI SỐ 1. A Trọng tâm kiến thức 1. 1. Phân thức đại số 1. 2. Hai phân thức bằng nhau 1. 3. Điều kiện xác định và giá trị của phân thức tại một giá trị đã cho của biến 1. B Các dạng bài tập 1. + Dạng 1. Nhận biết phân thức, xác định tử thức và mẫu thức 1. + Dạng 2. Điều kiện xác định và giá trị của phân thức tại một giá trị đã cho của biến 3. + Dạng 3. Hai phân thức bằng nhau 4. + Dạng 4. Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức 6. + Dạng 5. Vận dụng 7. C Bài tập vận dụng 8. Bài 22 . PHÂN THỨC ĐẠI SỐ 14. A Trọng tâm kiến thức 14. 1. Tính chất cơ bản của phân thức 14. 2. Rút gọn phân thức 14. 3. Quy đồng mẫu nhiều phân thức 14. B Các dạng bài tập 15. + Dạng 1. Rút gọn phân thức 15. + Dạng 2. Chứng minh đẳng thức 16. + Dạng 3. Tính giá trị biểu thức 17. + Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào biến 18. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước 19. + Dạng 6. Quy đồng mẫu thức 20. + Dạng 7. Vận dụng 21. C Bài tập vận dụng 23. Bài 23 . PHÉP CỘNG VÀ PHÉP TRỪ PHÂN THỨC ĐẠI SỐ 28. A Trọng tâm kiến thức 28. 1. Cộng hai phân thức cùng mẫu thức 28. 2. Cộng hai phân thức khác mẫu 28. 3. Trừ hai phân thức 28. 4. Cộng, trừ nhiều phân thức đại số 28. B Các dạng bài tập 29. + Dạng 1. Cộng, trừ các phân thức cùng mẫu thức 29. + Dạng 2. Cộng, trừ các phân thức không cùng mẫu thức 31. + Dạng 3. Tìm x thõa mãn đẳng thức cho trước 33. + Dạng 4. Rút gọn và tính giá trị biểu thức 33. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Chứng minh đẳng thức 36. + Dạng 6. Vận dụng 38. C Bài tập vận dụng 39. Bài 24 . PHÉP NHÂN VÀ PHÉP CHIA PHÂN THỨC ĐẠI SỐ 51. A Trọng tâm kiến thức 51. 1. Phép nhân các phân thức đại số 51. 2. Phân thức nghịch đảo 51. 3. Phép chia 51. B Các dạng bài tập 51. + Dạng 1. Thực hiện phép nhân, phép chia các phân thức 51. + Dạng 2. Rút gọn biểu thức 52. + Dạng 3. Tìm x thỏa mãn đẳng thức cho trước 54. + Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến 54. + Dạng 5. Vận dụng 55. C Bài tập tự luyện 57. LUYỆN TẬP CHUNG 63. A Trọng tâm kiến thức 63. B Các dạng bài tập 63. + Dạng 1. Tìm điều kiện của biến để phân thức xác định 63. + Dạng 2. Tìm giá trị của x để phân thức bằng 0 63. + Dạng 3. Rút gọn biểu thức 64. + Dạng 4. Vận dụng 65. C Bài tập vận dụng 66. ÔN TẬP CHƯƠNG VI 72. A Bài tập rèn luyện 72. B Bài tập bổ sung 78.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề quy đồng mẫu thức nhiều phân thức
Nội dung Chuyên đề quy đồng mẫu thức nhiều phân thức Bản PDF - Nội dung bài viết Chuyên đề quy đồng mẫu thức nhiều phân thức Chuyên đề quy đồng mẫu thức nhiều phân thức Tài liệu này bao gồm 14 trang, nội dung tập trung vào lý thuyết cần thiết, các phần dạng toán và hướng dẫn giải, cũng như tuyển chọn bài tập từ cơ bản đến nâng cao về chuyên đề quy đồng mẫu thức nhiều phân thức. Bạn sẽ được cung cấp đáp án và lời giải chi tiết, giúp hỗ trợ trong quá trình học tập môn Đại số 8, chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT Để quy đồng mẫu thức nhiều phân thức, bạn cần thực hiện các bước sau: + Bước 1: Phân tích mẫu thức thành nhân tử để tìm mẫu thức chung. + Bước 2: Tìm nhân tử phụ của mỗi mẫu thức. + Bước 3: Nhân cả tử và mẫu của từng phân thức với nhân tử phụ tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN + Dạng 1: Tìm mẫu thức chung của các phân thức. + Dạng 2: Quy đồng các mẫu thức. Bằng cách áp dụng các bước và dạng toán đã hướng dẫn, bạn sẽ dễ dàng làm quen với chuyên đề này và nâng cao kỹ năng giải toán của mình. Hy vọng tài liệu sẽ giúp bạn hiểu rõ hơn về quy đồng mẫu thức nhiều phân thức và thành công trong việc học tập.
Chuyên đề rút gọn phân thức
Nội dung Chuyên đề rút gọn phân thức Bản PDF - Nội dung bài viết Tóm tắt chuyên đề rút gọn phân thứcTóm tắt lý thuyếtBài tập và các dạng toán Tóm tắt chuyên đề rút gọn phân thức Chuyên đề rút gọn phân thức là một phần quan trọng trong chương trình Đại số 8 chương 2: Phân thức đại số. Tài liệu được biên soạn gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao. Tóm tắt lý thuyết Để rút gọn phân thức, ta cần sử dụng các phương pháp phân tích đa thức thành nhân tử để biến đổi cả tử và mẫu của phân thức. Sau đó, sử dụng các tính chất cơ bản của phân thức đã học để rút gọn phân thức đã cho. Bài tập và các dạng toán Trên tài liệu, các dạng toán chính bao gồm: Dạng 1: Rút gọn phân thức bằng cách phân tích tử thức và mẫu thức thành nhân tử, sau đó rút gọn bằng cách triệt tiêu nhân tử chung. Dạng 2: Chứng minh đẳng thức, tương tự các bước chứng minh đẳng thức đã học trong chuyên đề trước. Dạng 3: Rút gọn biểu thức với điều kiện cho trước, sử dụng phương pháp phân tích đa thức thành nhân tử và các tính chất cơ bản của phân thức. Dạng 4: Chứng minh biểu thức không phụ thuộc vào biến x, thông qua việc rút gọn phân thức sao cho không còn các ẩn. Để làm bài tập hiệu quả, học sinh cần hiểu rõ lý thuyết và áp dụng đúng các phương pháp đã học. Tài liệu cũng cung cấp đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và cải thiện kỹ năng giải toán của mình.
Chuyên đề tính chất cơ bản của phân thức
Nội dung Chuyên đề tính chất cơ bản của phân thức Bản PDF - Nội dung bài viết Chuyên đề tính chất cơ bản của phân thức Chuyên đề tính chất cơ bản của phân thức Chuyên đề này bao gồm 12 trang tài liệu, tập trung vào các khái niệm cơ bản về phân thức, bao gồm tính chất cơ bản và quy tắc đối dấu. Nội dung tóm tắt lý thuyết quan trọng cần nắm vững, cung cấp hướng dẫn chi tiết về cách giải các dạng toán phân thức. Bên cạnh đó, sách cũng tuyển chọn các bài tập từ dễ đến khó để học sinh có thể ôn tập và rèn luyện kỹ năng. Mỗi bài tập đi kèm đáp án và lời giải chi tiết, giúp học sinh tự học và tự kiểm tra kiến thức của mình. Đối với tóm tắt lý thuyết, trọng tâm là về tính chất cơ bản của phân thức và quy tắc đối dấu. Các bài tập được phân loại theo từng dạng toán, từ việc tìm đa thức thỏa mãn đẳng thức cho trước đến việc chứng minh cặp phân thức bằng nhau. Để giải các bài tập, học sinh cần phân tích tử thức và mẫu thức, rút gọn phân thức và áp dụng tính chất cơ bản để giải quyết vấn đề. Đồng thời, có cả những bài tập nâng cao để thách thức học sinh và giúp họ phát triển kỹ năng giải toán của mình. Chuyên đề này được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. Nó cung cấp kiến thức cơ bản và nâng cao về phân thức, giúp học sinh hiểu rõ và áp dụng các khái niệm trong thực tế. Bằng cách ôn tập và rèn luyện qua các bài tập, học sinh sẽ nâng cao khả năng giải toán và tự tin hơn khi đối mặt với các bài toán về phân thức.
Chuyên đề phân thức đại số
Nội dung Chuyên đề phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề Phân thức đại số Chuyên đề Phân thức đại số Chuyên đề này bao gồm tài liệu gồm 14 trang, tập trung vào phân thức đại số trong chương trình Đại số 8 chương 2: Phân thức đại số. Tài liệu tóm tắt lý thuyết cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến phân thức đại số. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao để hỗ trợ học sinh trong quá trình học tập. Trước hết, chúng ta cần hiểu rằng một phân thức đại số được biểu diễn dưới dạng A/B với A và B là các đa thức và B khác 0. Để chứng minh một phân thức luôn có nghĩa, ta có thể sử dụng các cách biến đổi thông dụng để triệt tiêu nhân từ chung và rút gọn phân thức. Để tìm đa thức trong đẳng thức, ta phân tích tử thức và mẫu thức thành nhân tử và sau đó triệt tiêu nhân tử chung. Để tìm giá trị của x sao cho phân thức bằng 0, ta đặt điều kiện cho mẫu khác 0, sau đó nhân mẫu thức với 0 và cho tử bằng 0 để tìm giá trị của x. Cuối cùng, để chứng minh đẳng thức có điều kiện, ta áp dụng tính chất của hai phân thức bằng nhau và dựa vào điều kiện đã cho để lập luận. Qua chuyên đề này, học sinh sẽ được trang bị kiến thức vững chắc về phân thức đại số và có thể áp dụng vào việc giải các bài tập phức tạp trong môn Đại số.