Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 chuyên năm 2022 - 2023 sở GDĐT Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 THPT chuyên năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 10 chuyên năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho bộ ba số xyp trong đó x y là các số nguyên dương và p là số nguyên tố. Xét phương trình: 5 4 1 y xx p. a. Với p = 2, chứng minh rằng không tồn tại x y nguyên dương thỏa mãn phương trình trên. b. Tìm tất cả các bộ ba số xyp thỏa mãn phương trình trên. + Cho tam giác nhọn ABC (AB ≤ AC) nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC CA AB lần lượt tại DEF. Đường thẳng qua D vuông góc với EF cắt EF tại điểm X và cắt đường tròn (I) tại KK D. a. Chứng minh rằng XE AC BC AB XF AB BC AC b. Đường thẳng AK cắt (O) tại điểm LL A. Các tia KI IL cắt đường tròn ngoại tiếp tam giác BIC lần lượt tại NMN IM I. Đường tròn ngoại tiếp các tam giác KFB KEC cắt đường thẳng EF lần lượt tại PQ P FQ E. Chứng minh rằng các điểm NCP thẳng hàng. c. Chứng minh rằng tứ giác MNPQ nội tiếp một đường tròn. + Cho tập hợp S = {1; 2; 3; …; 2022}. Một tập con A của S được gọi là tập con “Tốt” của tập S nếu trong A có ba số phân biệt xyz thỏa mãn tính chất: tồn tại ba số abc phân biệt trong S sao cho x b cy c az a b. Số tự nhiên n n (1 2022) được gọi là số “Đẹp” của tập S nếu mọi tập con có n phần tử của tập S đều là tập con “Tốt” của tập S. a. Chứng minh rằng n = 1012 không phải là số “Đẹp” của tập S. b. Tìm số “Đẹp” nhỏ nhất của tập S.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi lớp 10 môn Toán năm 2022 2023 trường THPT Phùng Khắc Khoan Hà Nội
Nội dung Đề học sinh giỏi lớp 10 môn Toán năm 2022 2023 trường THPT Phùng Khắc Khoan Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 10 năm 2022 - 2023 THPT Phùng Khắc Khoan Hà Nội Đề học sinh giỏi Toán lớp 10 năm 2022 - 2023 THPT Phùng Khắc Khoan Hà Nội Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 10 đề thi chọn học sinh giỏi văn hóa cấp trường môn Toán lớp 10 năm học 2022 - 2023 trường THPT Phùng Khắc Khoan. Đề thi bao gồm các câu hỏi như sau: 1. Tìm phương trình parabol P 2y = ax^2 + bx + c biết rằng P đi qua ba điểm A, B, C. 2. Trong mọi tam giác ABC, gọi a, b, c lần lượt là độ dài các cạnh BC, AC, AB và S là diện tích tam giác ABC. Chứng minh rằng: 2cotA + 2cotB + 2cotC = 4abc/S. 3. Cho phương trình 2x^4 - 4x^2 + 5x - m = 0. Tìm tất cả các giá trị của tham số m để phương trình có bốn nghiệm thực phân biệt. Đề thi cung cấp đáp án và lời giải chi tiết, giúp các em học sinh ôn tập và nắm vững kiến thức để chuẩn bị cho kì thi học sinh giỏi sắp tới. Chúc các em thành công!
Đề HSG lớp 10 môn Toán năm 2022 2023 trường chuyên Lương Thế Vinh Đồng Nai
Nội dung Đề HSG lớp 10 môn Toán năm 2022 2023 trường chuyên Lương Thế Vinh Đồng Nai Bản PDF - Nội dung bài viết Đề HSG Toán lớp 10 năm 2022-2023 trường chuyên Lương Thế Vinh Đồng Nai Đề HSG Toán lớp 10 năm 2022-2023 trường chuyên Lương Thế Vinh Đồng Nai Xin chào quý thầy cô và các em học sinh lớp 10! Trong đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022-2023 của trường THPT chuyên Lương Thế Vinh, tỉnh Đồng Nai, có những câu hỏi đầy thú vị đòi hỏi sự tư duy và logic cao. Trong đề thi, có câu hỏi về tam giác ABC không cân nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I), với điểm tiếp xúc của (I) là D, E, F tương ứng trên BC, CA, AB. Bạn cần chứng minh rằng OI và MN vuông góc nhau, ba đường thẳng MN, EF và AS đồng quy, cũng như đường thẳng qua K song song OI chia đôi EF. Ngoài ra, đề còn đề cập đến số nguyên dương an = 2^(n3 + 1) - 3^(n2 + 1) + 5^(n + 1). Bạn cần tìm các số nguyên tố p mà có vô hạn giá trị nguyên dương n mà an không chia hết cho p, và chứng minh rằng tồn tại vô hạn số nguyên tố p sao cho có giá trị nguyên dương n mà an chia hết cho p. Cuối cùng, đề còn liên quan đến các số thực đôi một khác nhau a1, a2, ..., an; b1, b2, ..., bn và công thức tính tích các số trên cột thứ i. Bạn cần chứng minh rằng đa thức P(x) - C là tích của n đa thức bậc nhất có hệ số ứng với x là 1, cũng như tích tất cả các số trên mỗi hàng cũng bằng nhau. Đề thi không chỉ là cơ hội để thể hiện kiến thức Toán mà còn là bài toán thách thức tư duy logic và sáng tạo của các em học sinh. Chúc các em thành công trong việc giải quyết các câu hỏi thú vị này!
Đề HSG lớp 10 môn Toán vòng 3 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội
Nội dung Đề HSG lớp 10 môn Toán vòng 3 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội Bản PDF - Nội dung bài viết Đề HSG lớp 10 Toán vòng 3 năm 2022 - 2023 trường THPT Nguyễn Gia Thiều Hà Nội Đề HSG lớp 10 Toán vòng 3 năm 2022 - 2023 trường THPT Nguyễn Gia Thiều Hà Nội Chào mừng đến với Đề thi HSG lớp 10 môn Toán vòng 3 năm học 2022 - 2023 của trường THPT Nguyễn Gia Thiều, thành phố Hà Nội. Đề thi này sẽ giúp các em học sinh lớp 10 ôn tập và chuẩn bị cho kì thi chọn học sinh giỏi cấp trường. Trong đề thi này, chúng ta sẽ đối mặt với các bài toán thú vị, như bài toán về việc đếm số học sinh giỏi theo từng môn, bài toán về thám hiểm vùng cực và cách di chuyển hiệu quả để trở về căn cứ trước khi bão tuyết ập đến, cũng như bài toán về nhịp tim và công thức tính nhịp tim tối đa ở các độ tuổi khác nhau. Bài toán đầu tiên yêu cầu chúng ta xác định số học sinh giỏi môn Võ trong lớp 10A, khi đã biết số học sinh giỏi ít nhất một môn. Bài toán thứ hai đưa ra tình huống đầy thách thức của đoàn thám hiểm và cách tính toán để di chuyển hiệu quả. Bài toán cuối cùng giúp chúng ta hiểu rõ về mối quan hệ giữa nhịp tim tối đa và độ tuổi, cũng như cách tính toán để tập thể dục hiệu quả. Hãy cùng rèn luyện kỹ năng giải toán, logic và khả năng suy luận thông qua các bài toán thú vị trong Đề HSG lớp 10 Toán vòng 3 năm 2022 - 2023. Chúc các em thành công và giải được nhiều bài toán hóc búa!
Đề HSG lớp 10 môn Toán vòng 2 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội
Nội dung Đề HSG lớp 10 môn Toán vòng 2 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội Bản PDF - Nội dung bài viết Đề HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà NộiBài toán sản xuấtBài toán "Lá cờ Việt Nam"Bài toán hàm số Đề HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà Nội Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 vòng 2 năm học 2022-2023 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội. Đề thi bao gồm đáp án và lời giải chi tiết để giúp các em ôn tập và chuẩn bị tốt cho kỳ thi. Bài toán sản xuất Trong bài toán này, có ba nhóm máy A, B, C được sử dụng để sản xuất hai loại sản phẩm I và II. Bảng thông tin về số máy cần thiết từng nhóm để sản xuất mỗi loại sản phẩm được cung cấp. Mỗi sản phẩm mang lại một lợi nhuận khác nhau. Bài toán yêu cầu tìm phương án sản xuất để có lãi cao nhất. Bài toán "Lá cờ Việt Nam" Bài toán liên quan đến tỷ số vàng, một khái niệm từ toán học và nghệ thuật. Tỷ số vàng thường được ký hiệu bằng ký hiệu (phi) trong bảng chữ cái Hy Lạp. Nội dung bài toán đưa ra một ví dụ về tỷ số vàng và mối liên hệ với hình chữ nhật, cùng với quy định về quốc kỳ nước Cộng hòa xã hội chủ nghĩa Việt Nam. Bài toán hàm số Trong bài toán này, đề cập đến hình chữ nhật, liên quan đến hàm số và diện tích tam giác. Em được yêu cầu tìm tọa độ điểm C trên cung AB của đồ thị parabol P sao cho tam giác ABC có diện tích lớn nhất và tính diện tích đó. Tất cả các bài toán trong đề thi HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà Nội đều mang tính chất thực tế và cần sự tư duy logic và kiến thức toán học vững chắc từ các em học sinh. Chúng tôi hy vọng rằng các em sẽ vượt qua thử thách này một cách xuất sắc và phấn đấu học tập hơn nữa trong tương lai.