Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2018 2019 trường chuyên Lê Quý Đôn Đà Nẵng

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2018 2019 trường chuyên Lê Quý Đôn Đà Nẵng Bản PDF Sytu giới thiệu đến bạn đọc nội dung đề thi HK1 Toán lớp 11 năm học 2018 – 2019 trường THPT chuyên Lê Quý Đôn – Đà Nẵng, đề thi có mã đề 132 gồm 3 trang với 20 câu trắc nghiệm và 4 câu tự luận, trong đó phần tự luận có sự phân ban giữa các lớp, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2018 – 2019 trường chuyên Lê Quý Đôn – Đà Nẵng : + An và Bình tham gia thi hai môn trắc nghiệm Vật lý và Hóa học. Đề thi của mỗi môn gồm 6 mã khác nhau và các môn khác nhau có mã khác nhau. Đề thi được sắp xếp và phát cho các thí sinh một cách ngẫu nhiên. Tính xác suất để trong 2 môn thi đó An và Bình có chung đúng một mã để. + Người ta chọn ngẫu nhiên 4 câu hỏi trong 15 câu hỏi của ngân hàng đề thi. Biết rằng bạn Thủy đã học thuộc 8 câu trong 15 câu hỏi của ngân hàng đề. Tính xác suất để chọn được ít nhất 2 câu mà bạn Thủy đã thuộc. [ads] + Cho hình lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình thang thỏa AB song song với CD và AB = 2CD. Mặt phẳng qua A và cắt các cạnh BB’, CC’, DD’ lần lượt tại M, N, P. 1. Tứ giác AMNP là hình gì? Chứng minh giao điểm của các đường thẳng AP và MN thuộc một đường thẳng cố định. 2. Chứng minh BM + 2DP = 2CN.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 11 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
Đề kiểm tra học kỳ 1 Toán 11 năm học 2019 – 2020 trường THPT Bình Tân – thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Từ một hộp đựng 12 viên bi, gồm 3 bi trắng, 4 bi xanh, và 5 bi vàng người ta chọn ngẫu nhiên 4 bi. Tính xác suất để chọn được 4 bi cùng màu. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với AB = 2BC = 2CD, đáy lớn AB. a. Xác định (SAD) ∩ (SBC). b. Xác định (SAB) ∩ (SCD). c. Gọi I là trung điểm của SB, chứng minh CI // (SAD). d. Gọi E, F lần lượt là trung điểm của AD và SC. Tìm G = EF ∩ (SBD). Chứng minh G là trọng tâm của tam giác SEC. + Tìm số hạng không chứa x trong khai triển (3x^2 – 1/x^2)^10 (x khác 0).
Đề kiểm tra học kì 1 Toán 11 năm 2019 - 2020 trường Albert Einstein - TP HCM
Đề kiểm tra học kì 1 Toán 11 năm 2019 – 2020 trường Albert Einstein – TP HCM được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian làm bài 90 phút (không tính thời gian giáo viên coi thi phát đề). Trích dẫn đề kiểm tra học kì 1 Toán 11 năm 2019 – 2020 trường Albert Einstein – TP HCM : + Từ các chữ số: 0; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau. + Lớp 12A1 có 12 học sinh gồm 5 học sinh nam và 7 học sinh nữ. Chọn ngẫu nhiên 4 em làm trực nhật lớp. Tính xác suất để chọn được: a. 2 em học sinh nam và 2 em học sinh nữ. b. Ít nhất 1 em học sinh nam. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. a. Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). b. Chứng minh AB // (SCD). c. G là trọng tâm của tam giác SBC. Tìm giao điểm của đường thẳng SA và (CDG), suy ra thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (CDG).
Đề kiểm tra HKI Toán 11 năm 2019 - 2020 trường Nguyễn Gia Thiều - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 11 đề kiểm tra HKI Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Gia Thiều – Hà Nội, kỳ thi nhằm kiểm tra toàn diện tất cả các kiến thức Đại số & Giải tích 11 và Hình học 11 mà học sinh đã học trong học kỳ vừa qua. Trích dẫn đề kiểm tra HKI Toán 11 năm 2019 – 2020 trường Nguyễn Gia Thiều – Hà Nội : + Khẳng định nào dưới đây sai? A. Phép biến hình bảo toàn khoảng cách hai điểm bất kì là một phép đồng dạng. B. Phép vị tự tâm I, tỉ số k biến hai điểm M, N lần lượt thành hai điểm M’, N’ thì M’N’ = kMN. C. Phép quay tâm I, góc quay 540° là một phép đối xứng tâm I. D. Phép quay biến đường thẳng thành đường thẳng vuông góc với nó. [ads] + Một danh sách có 10 học sinh và 10 lớp học đều được đánh số theo thứ tự từ 1 đến 10. Chọn ngẫu nhiên 3 học sinh và sắp xếp vào 3 lớp học được lấy từ 10 lớp học trên (mỗi lớp chỉ có 1 học sinh). Tính xác suất để học sinh có thứ tự lẻ thì vào lớp học được đánh số lẻ, học sinh có thứ tự chẵn thì vào lớp học được đánh số chẵn. + Trong không gian, khẳng định nào dưới đây đúng? A. Nếu hai mặt phẳng lần lượt chứa hai đường thẳng song song thì giao tuyến, nếu có, của chúng sẽ song song với cả hai đường thẳng đó. B. Nếu ba mặt phẳng cắt nhau theo ba giao tuyến thì ba giao tuyến đó đồng qui. C. Nếu hai đường thẳng a và b chéo nhau thì có hai đường thẳng p và q song song nhau mà mỗi đường đều cắt cả a và b. D. Hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không chéo nhau.
Đề kiểm tra học kỳ 1 Toán 11 năm 2019 - 2020 trường THPT Kim Liên - Hà Nội
Thứ Hai ngày 09 tháng 12 năm 2019, trường THPT Kim Liên – Hà Nội tổ chức kỳ thi kiểm tra chất lượng cuối HK1 môn Toán lớp 11 năm học 2019 – 2020. Đề kiểm tra học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT Kim Liên – Hà Nội có mã đề 114, đề thi gồm có 02 phần: phần trắc nghiệm gồm có 25 câu, chiếm 5,0 điểm, thời gian làm bài thi trắc nghiệm là 45 phút; phần tự luận gồm có 03 câu, chiếm 5,0 điểm, thời gian làm bài thi tự luận là 45 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT Kim Liên – Hà Nội : + Đội tuyển học sinh giỏi môn toán của trường THPT Kim Liên (Hà Nội) gồm có: 5 học sinh khối 10; 5 học sinh khối 11; 5 học sinh khối 12. Chọn ngẫu nhiên 10 học sinh từ đội tuyển đi tham dự kỳ thi AMC. Có bao nhiêu cách chọn được học sinh của cả ba khối và có nhiều nhất hai học sinh khối 10? + Trong các mệnh đề sau, mệnh đề nào sai? A. Hai đường thẳng không có điểm chung thì chéo nhau. B. Hai đường thẳng phân biệt không cắt nhau, không song song thì chéo nhau. C. Hai đường thẳng chéo nhau thì không có điểm chung. D. Hai đường thẳng phân biệt không chéo nhau thì hoặc cắt nhau hoặc song song. [ads] + Trong các khẳng định sau, khẳng định nào đúng? A. Có duy nhất một mặt phẳng đi qua ba điểm phân biệt cho trước. B. Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau cho trước. C. Có duy nhất một mặt phẳng đi qua một điểm và một đường thẳng cho trước. D. Qua bốn điểm phân biệt bất kỳ có duy nhất một mặt phẳng. + Ban cán sự lớp 11A trường THPT Kim Liên (Hà Nội) có 2 học sinh nam và 9 học sinh nữ. Nhân dịp kỷ niệm 45 năm ngày thành lập trường, giáo viên chủ nhiệm lớp chọn ngẫu nhiên 3 học sinh trong ban cán sự tới dự chương trình “45 NĂM – SEN VÀNG HỘI NGỘ”. Tính xác suất để 3 học sinh được chọn có cả nam và nữ. + Đề thi HK1 Toán 11 có 25 câu trắc nghiệm, mỗi câu có bốn phương án trả lời trong đó chỉ có một phương án đúng. Một học sinh không học bài nên làm bằng cách chọn ngẫu nhiên mỗi câu một phương án. Tính xác suất để học sinh đó làm đúng đáp án 15 câu.