Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG THPT 2022 môn Toán sở GDĐT Đồng Nai

Thứ Ba ngày 28 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi Quốc gia THPT môn Toán năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG THPT 2022 môn Toán sở GD&ĐT Đồng Nai gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển thi HSG QG THPT 2022 môn Toán sở GD&ĐT Đồng Nai : + Để xác định ai sở hữu kho báu, Alibaba và bốn mươi tên cướp chơi trò chơi sau đây trên một bảng ô vuông vô hạn: họ luân phiên chơi, đầu tiên là Alibaba, sau đó là lần lượt mỗi tên cướp, rồi sau đó là Alibaba, rồi lại lần lượt các tên cướp; cứ tiếp tục như vậy. Mỗi lượt chơi, người chơi được phép tô màu một đoạn thẳng đơn vị là cạnh chung của hai ô vuông đơn vị nào đó của bảng miễn là đoạn đó chưa được tô. Alibaba được sở hữu kho báu nếu sau một lượt chơi của một người chơi nào đó, có một hình chữ nhật 1 x 2 (hoặc 2 x 1) mà toàn bộ biên của nó được tô nhưng đoạn thẳng đơn vị nằm bên trong thì không được tô (xem hình); nếu không thì kho báu thuộc về bốn mươi tên cướp. Hỏi Alibaba có cách nào lấy được kho báu hay không? + Tìm tất cả các hàm số f: R vào R sao cho f(xy) = yf(x) + x + f(f(y) – f(x)) với mọi x, y thuộc R. + Cho tam giác ABC nhọn nội tiếp (O) có H là trực tâm và AD, BE, CF là các đường cao; CH cắt lại đường tròn ngoại tiếp tam giác AHB ở M và BH cắt lại đường tròn ngoại tiếp tam giác AHC ở N. Lấy T đối xứng H qua EF và gọi I là tâm đường tròn ngoại tiếp tam giác THD. 1) Chứng minh LH là tiếp tuyến của đường tròn ngoại tiếp tam giác HMN. 2) DM cắt (AHB) tại điểm thứ hai là X; DN cắt đường tròn ngoại tiếp tam giác AHC tại điểm thứ hai là Y. Gọi P là tâm đường tròn ngoại tiếp tam giác AXY. Chứng minh AP vuông góc với LD.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 - 2018 sở GD và ĐT Thừa Thiên Huế
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .
Đề thi thử HSG Toán 12 THPT năm học 2017 - 2018 trường THPT Bình Xuyên - Vĩnh Phúc
Đề thi thử HSG Toán 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA.
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An - Gia Lai
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An – Gia Lai gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1; 4) và các điểm B, C thuộc đường thẳng Δ: x – y – 4 = 0. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK. b/ Gọi M, N lần lượt là trung điểm của đoạn thẳng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau. + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6.
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Hải Dương
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Môn bóng đá nam SEA GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng. [ads] + Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a. a. Tính góc giữa hai đường thẳng AB, CD b. Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất.