Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 năm 2019 - 2020 trường chuyên Hùng Vương - Phú Thọ

Ngày … tháng … năm 2020, trường THPT chuyên Hùng Vương – Phú Thọ tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thứ nhất, nhằm kiểm tra kiến thức môn Toán của học sinh khối 12, hướng đến kỳ thi THPT Quốc gia 2020. Đề khảo sát Toán 12 năm 2019 – 2020 trường chuyên Hùng Vương – Phú Thọ có mã đề 010, đề gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát Toán 12 năm 2019 – 2020 trường chuyên Hùng Vương – Phú Thọ : + Từ một tấm bìa hình vuông có độ dài cạnh bằng 10 với M và N là trung điểm của hai cạnh, người ta gấp theo các đường AM, MN và AN để được hình chóp (H). Thể tích của khối chóp (H) bằng? + Cho hàm số f(x) = -2/x khi x > 0 và f(x) = -8/x khi x < 0 có đồ thị (T). Xét điểm A di động trên đường thẳng delta: y = x. Hai đường thẳng d và d’ qua A tương ứng song song Ox, Oy và cắt (T) tại lần lượt tại B và C. Tam giác ABC có diện tích nhỏ nhất bằng? + Đồ thị của hàm số f(x) = ax^4 + bx^2 + c có đúng ba điểm chung với trục hoành tại các điểm M, N, P có hoành độ lần lượt là m, n, p (m < n < p). Khi f(1) = -3/4 và f'(-1) = 1 thì max|f(x)| với x thuộc [m;p] bằng?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát cuối năm lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Nam
Nội dung Đề khảo sát cuối năm lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Nam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng cuối năm môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Nam; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát cuối năm Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Hà Nam : + Trên tập hợp số phức, xét phương trình 2 z 1 2z m (m là tham số thực). Gọi T là tập hợp tất cả các giá trị của m để phương trình trên có nghiệm z thỏa mãn z 3. Tổng các phần tử của T bằng? + Cho mặt cầu có bán kính S bằng 5. Mặt phẳng P cắt mặt cầu theo giao tuyến là đường tròn C có chu vi bằng. Xét 6 tứ diện có ABCD đáy là tam giác ABC đều nội tiếp đường tròn C còn di D chuyển trên mặt cầu. Giá trị lớn nhất của thể tích S khối tứ diện ABCD bằng? + Có tất cả bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn [0;2] không vượt quá 15?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hải Dương
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; đề thi có đáp án mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108 – 109 – 110 – 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118 – 119 – 120 – 121 – 122 – 123 – 124. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho hình nón đỉnh S có đường tròn đáy tâm O và góc ở đỉnh bằng 120. Một mặt phẳng đi qua S cắt hình nón theo thiết diện là tam giác SAB. Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3, diện tích xung quanh của hình nón đã cho bằng 18 3. Tính diện tích tam giác SAB. + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu 2 2 4 4 0 S x y z x y và hai điểm A B 4 2 4 1 4 2. MN là dây cung của mặt cầu thỏa mãn MN cùng hướng với u = (0;1;1) và MN 4 2. Tính giá trị lớn nhất của AM BN. + Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi cùng màu là khác nhau). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố “Lấy lần thứ hai được một viên bi xanh”, ta được kết quả?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2023 sở GD ĐT Cần Thơ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2023 sở GD ĐT Cần Thơ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Cần Thơ; hướng đến kỳ thi tốt nghiệp THPT 2023 môn Toán. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 năm 2023 sở GD&ĐT Cần Thơ : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z − 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;−4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là (C) có thể tích lớn nhất. Biết phương trình của (a) có dạng ax + by – z + c = 0 (a, b, c ∈ R). Giá trị của a − b + c bằng? + Trong không gian Oxyz, cho đường thẳng d, mặt phẳng (P): x + y – 2z + 5 = 0 và điểm A(1;−1;2). Đường thẳng delta đi qua điểm A, cắt d và (P) lần lượt tại M, N sao cho A là trung điểm của đoạn thẳng MN. Biết delta có một vectơ chỉ phương u = (a;b;4), giá trị của a + b bằng? + Cho khối nón đỉnh S có đáy là hình tròn tâm O. Gọi A và B là hai điểm thuộc đường tròn (O) sao cho tam giác SAB vuông và có diện tích bằng 4a2. Góc giữa đường thẳng SO và mặt phẳng (SAB) bằng 30°. Thể tích của khối nón đã cho bằng?