Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình học giải tích không gian - Lưu Huy Thưởng

Tài liệu gồm 60 trang với phần lý thuyết, công thức, bài tập có đáp án và tuyển tập các bài hình học tọa độ không gian trong đề thi THPT, Đại học – Cao đẳng. Tài liệu do thầy Lưu Huy Thưởng biên soạn. BÀI 1: MỞ ĐẦU BÀI 2: PHƯƠNG TRÌNH MẶT CẦU BÀI 3: PHƯƠNG TRÌNH MẶT PHẲNG Vấn đề 1: Viết phương trình mặt phẳng Để lập phương trình mặt phẳng (α) ta cần xác định một điểm thuộc (α) và một VTPT của nó Vấn đề 2: Vị trí tương đối của hai mặt phẳng Vấn đề 3: Khoảng cách từ một điểm đến một mặt phẳng Khoảng cách giữa hai mặt phẳng song song.Hình chiếu của một điểm trên mặt phẳng. Điểm đối xứng của một điểm qua mặt phẳng Vấn đề 4: Góc giữa hai mặt phẳng BÀI 4: PHƯƠNG TRÌNH ĐƯỜNG THẲNG Vấn đề 1: Lập phương trình đường thẳng Để lập phương trình đường thẳng d ta cần xác định một điểm thuộc d và một VTCP của nó Vấn đề 2: Vị trí tương đối giữa hai đường thẳng Để xét VTTĐ giữa hai đường thẳng, ta có thể sử dụng một trong các phương pháp sau: + Phương pháp hình học: Dựa vào mối quan hệ giữa các VTCP và các điểm thuộc các đường thẳng + Phương pháp đại số: Dựa vào số nghiệm của hệ phương trình các đường thẳng Vấn đề 3: Vị trí tương đối giữa đường thẳng và mặt phẳng Để xét VTTĐ giữa đường thẳng và mặt phẳng, ta có thể sử dụng một trong các phương pháp sau: + Phương pháp hình học: Dựa vào mối quan hệ giữa VTCP của đường thẳng và VTPT của mặt phẳng + Phương pháp đại số: Dựa vào số nghiệm của hệ phương trình đường thẳng và mặt phẳng Vấn đề 5: Khoảng cách Vấn đề 6: Góc Vấn đề 7: Một số vấn đề khác [ads] CÁC DẠNG TOÁN PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN I. VIẾT PHƯƠNG TRÌNH MẶT PHẲNG + Dạng 1: Cơ bản + Dạng 2: Phương trình mặt phẳng liên quan tới mặt cầu + Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách + Dạng 4: Viết phương trình mặt phẳng liên quan đến góc + Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác II. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG + Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương + Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác + Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác + Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách + Dạng 5: Viết phương trình đường thẳng liên quan đến góc + Dạng 6: Viết phương trình đường thẳng liên quan đến tam giác III. VIẾT PHƯƠNG TRÌNH MẶT CẦU IV. TÌM ĐIỂM THOẢ ĐIỀU KIỆN CHO TRƯỚC + Dạng 1: Xác định điểm thuộc mặt phẳng + Dạng 2: Xác định điểm thuộc đường thẳng + Dạng 3: Xác định điểm thuộc mặt cầu + Dạng 4: Xác định điểm trong không gian + Dạng 5: Xác định điểm trong đa giác CÁC BÀI TOÁN LIÊN QUAN ĐẾN MIN – MAX

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách, một chủ đề rất quan trọng trong chương trình Hình học 11 chương 3. Bên cạnh tài liệu góc và khoảng cách dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách: A. KIẾN THỨC CƠ BẢN I. GÓC 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. II. KHOẢNG CÁCH 1. Khoảng cách từ một điểm đến mặt phẳng, khoảng cách giữa hai mặt phẳng song song. 2. Khoảng cách từ một điểm đến một đường thẳng – khoảng cách giữa hai đường thẳng. B. KỸ NĂNG CƠ BẢN + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến mặt phẳng; biết cách khoảng cách giữa hai mặt phẳng song song. + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến một đường thẳng; biết cách tính khoảng cách giữa hai đường thẳng song song; khoảng cách giữa hai đường thẳng chéo nhau; khoảng cách từđường thẳng đến mặt phẳng song song. + Nhớ và vận dụng được công thức góc giữa hai đường thẳng; góc giữa đường thẳng và mặt phẳng; góc giữa hai mặt phẳng. + Áp dụng được góc và khoảng cách vào các bài toán khác. C. BÀI TẬP TRẮC NGHIỆM
Xác định tâm, bán kính, diện tích và thể tích của mặt cầu
Tài liệu gồm 12 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán xác định tâm, bán kính, diện tích và thể tích của mặt cầu, được phát triển dựa trên câu 14 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu xác định tâm, bán kính, diện tích và thể tích của mặt cầu: A. KIẾN THỨC CẦN NHỚ 1. Phương trình mặt cầu dạng chính tắc Cho mặt cầu có tâm I(a;b;c) có bán kính R. Khi đó phương trình chính tắc của mặt cầu là (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. 2. Phương trình mặt cầu dạng khai triển Phương trình mặt cầu dạng khai triển là (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0. Khi đó mặt cầu có có tâm I(a;b;c), bán kính R = √(a^2 + b^2 + c^2 – d) với a^2 + b^2 + c^2 – d > 0. B. BÀI TẬP MẪU 1. Đề bài : Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu: (S): (x + 1)^2 + (y – 2)^2 + (z – 1)^2 = 9. Tìm tọa độ tâm I và tính bán kính R của (S). 2. Phân tích hướng dẫn giải a. Dạng toán: Đây là dạng toán sử dụng tính chất để xác định tâm và bán kính của mặt cầu. b. Hướng giải: + Bước 1: Dựa trên phương trình mặt cầu dạng chính tắc tìm tâm và bán kính của mặt cầu. + Bước 2: Mặt cầu (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2 có tâm I(a;b;c) và bán kính R. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN (có đáp án và lời giải chi tiết).
Bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ
Tài liệu gồm 13 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT 2020, hướng dẫn giải bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ, được phát triển dựa trên câu 13 đề thi tham khảo THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ: 1. Cho điểm M(x;y;z): Hình chiếu của điểm M trên Ox là M1(x;0;0); Hình chiếu của điểm M trên Oy là M2(0;y;0); Hình chiếu của điểm M trên Oz là M3(0;0;z); Hình chiếu của điểm M trên (Oxy) là M4(x;y;0); Hình chiếu của điểm M trên (Oyz) là M5(0;y;z); Hình chiếu của điểm trên (Ozx) là M6(x;0;z). 2. Tìm hình chiếu của điểm A trên mặt phẳng (α). + Viết phương trình đường thẳng d đi qua A và vuông góc với (α). + Hình chiếu H của điểm A là giao điểm của đường thẳng d và (α). [ads] 3. Tìm hình chiếu d’ của đường thẳng d trên mặt phẳng (α). Cách 1 : – Nếu đường thẳng d song song với (α) thì d // d’. + Lấy điểm M thuộc đường thẳng d và tìm hình chiếu M’ của điểm M trên (α). + Đường thẳng d’ đi qua M’ và song song với đường thẳng d. – Nếu đường thẳng d cắt (α) tại M. + Lấy điểm N thuộc đường thẳng d và tìm hình chiếu N’ của N trên (α). + Đường thẳng d’ đi qua hai điểm là M và N’. Cách 2 : + Viết phương trình mặt phẳng (β) chứa đường thẳng d và vuông góc với (α). + Khi đó đường thẳng d’ là giao tuyến của hai mặt phẳng (α) và (β). 4. Tìm hình chiếu A’ của A trên đường thẳng d. Cách 1 : + Viết phương trình mặt phẳng (P) chứa A và vuông góc với d. + Hình chiếu A’ là giao điểm của d và (P). Cách 2 : + Tìm tọa độ điểm A’ theo tham số t (A’ thuộc d). + Lập phương trình AA’.ud = 0. Giải phương trình tìm t suy ra tọa độ điểm A’. 5. Tìm điểm M’ đối xứng với M qua (P). + Tìm hình chiếu H của M trên (P) (khi đó H là trung điểm MM’). + Áp dụng công thức tính tọa độ trung điểm suy ra tọa độ điểm M’.
Viết phương trình mặt cầu
Tài liệu gồm 10 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán viết phương trình mặt cầu, được phát triển dựa trên câu 33 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu viết phương trình mặt cầu: A. KIẾN THỨC CẦN NẮM 1. Phương trình mặt cầu (S) dạng 1 Để viết phương trình mặt cầu (S), ta cần tìm tâm I(a;b;c) và bán kính R. Khi đó (S) có tâm I(a;b;c) và bán kính R khi và chỉ khi (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. 2. Phương trình mặt cầu (S) dạng 2 (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0 với a^2 + b^2 + c^2 – d > 0 là phương trình mặt cầu dạng 2 Tâm I(a;b;c) và bán kính: R = √(a^2 + b^2 + c^2 – d) > 0. [ads] B. BÀI TẬP MẪU 1. Bài toán : Trong không gian Oxyz, cho mặt cầu (S) có tâm là điểm I(0;0;-3) và đi qua điểm M(4;0;0). Phương trình của (S) là? 2. Phân tích hướng dẫn giải a. Dạng toán: Đây là dạng toán viết phương trình của mặt cầu. b. Hướng giải: + Bước 1: (S) có tâm I(a;b;c) và bán kính R ⇔ (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. + Bước 2: R = IM = √[(4 – 0)^2 + (0 – 0)^2 + (0 + 3)^2] = 5. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN