Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giao lưu HSG Toán năm 2018 2019 cụm Gia Bình Lương Tài Bắc Ninh

Nội dung Đề thi giao lưu HSG Toán năm 2018 2019 cụm Gia Bình Lương Tài Bắc Ninh Bản PDF Đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh mã đề 888 gồm 6 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài thi 90 phút, kỳ thi được diễn ra vào ngày 23 tháng 12 năm 2018 nhằm đánh giá chất lượng đội tuyển học sinh giỏi Toán của các trường, đồng thời tạo điều kiện để các em rèn luyện và phát triển năng lực môn Toán của bản thân, đề thi có đáp án mã đề 666 và 888. Trích dẫn đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh : + Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu I, II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai sản phẩm trên. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ. Tổng số tiền lãi là lớn nhất có thể đạt được là? + Nhà xe khoán cho hai tài xế ta-xi Nam và Tiến mỗi người lần lượt nhận 32 lít và 72 lít xăng. Hỏi tổng số ngày ít nhất là bao nhiêu để hai tài xế chạy tiêu thụ hết số xăng của mình được khoán, biết rằng chỉ tiêu cho hai người một ngày tổng cộng chỉ chạy đủ hết 10 lít xăng và mỗi ngày lượng xăng của mỗi người chạy là không thay đổi? [ads] + Một người thợ muốn tạo một đồ vật hình trụ từ một khối gỗ hình hộp chữ nhật, có đáy là hình vuông và chiều cao bằng 1,25 m. Để tạo ra đồ vật đó người thợ vẽ hai đường tròn (C) và (C’) nội tiếp hai hình vuông của hai mặt đáy của khối gỗ hình hộp chữ nhật rồi dọc đi phần gỗ thừa theo các đường sinh của đồ vật hình trụ. Biết rằng, trong tam giác cong tạo bởi đường tròn (C) và hình vuông ngoại tiếp của (C) có một hình chữ nhật kích thước 0,3cm x 0,6cm (như hình vẽ) và mỗi mét khối gỗ thành phẩm có giá 20 triệu đồng. Hỏi người thợ cần số tiền gần nhất với số tiền của phương án nào dưới đây để tạo được 10 đồ vật như vậy. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Tuyển tập đề thi học sinh giỏi lớp 12 môn Toán sở GD ĐT Quảng Bình (2013 2023)
Nội dung Tuyển tập đề thi học sinh giỏi lớp 12 môn Toán sở GD ĐT Quảng Bình (2013 2023) Bản PDF Tài liệu gồm 76 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu, tuyển tập 10 đề thi chọn học sinh giỏi môn Toán lớp 12 sở Giáo dục và Đào tạo tỉnh Quảng Bình (từ năm 2013 đến năm 2023), có đáp án và lời giải chi tiết. Mục lục : PHẦN I . ĐỀ THI 1. 1 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2022 – 2023 (Trang 3). 2 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2021 – 2022 (Trang 8). 3 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2020 – 2021 (Trang 9). 4 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2019 – 2020 (Trang 10). 5 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2018 – 2019 (Trang 11). 6 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2017 – 2018 (Trang 12). 7 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2016 – 2017 (Trang 13). 8 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2015 – 2016 (Trang 14). 9 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2014 – 2015 (Trang 15). 10 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2013 – 2014 (Trang 16). PHẦN II . LỜI GIẢI 17. 1 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2022 – 2023 (Trang 19). 2 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2021 – 2022 (Trang 35). 3 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2020 – 2021 (Trang 39). 4 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2019 – 2020 (Trang 43). 5 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2018 – 2019 (Trang 47). 6 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2017 – 2018 (Trang 52). 7 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2016 – 2017 (Trang 56). 8 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2015 – 2016 (Trang 61). 9 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2014 – 2015 (Trang 65). 10 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2013 – 2014 (Trang 69).
Đề thi Olympic môn Toán năm 2023 trường THPT chuyên KHTN Hà Nội
Nội dung Đề thi Olympic môn Toán năm 2023 trường THPT chuyên KHTN Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic môn Toán năm 2023 trường THPT chuyên Khoa học Tự nhiên, thành phố Hà Nội. Trích dẫn Đề thi Olympic môn Toán năm 2023 trường THPT chuyên KHTN – Hà Nội : + Cho dãy số (an) thỏa mãn a1 = 7 và an + 1 = an(3an − 22n + 1) với mọi số nguyên dương n. Chứng minh rằng nếu p là ước nguyên tố của a2023 thì p − 1 chia hết cho 3. + Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn (O) với phân giác trong AD (D nằm trên cạnh BC). M là trung điểm BC. AM cắt lại (O) tại N. J là trung điểm cung BC chứa A của (O). Trên (O) lấy các điểm S và T sao cho JS k AB và JT k AC. a) Chứng minh rằng đường thẳng ST đi qua tâm đường tròn ngoại tiếp của tam giác ADN. b) Lấy P thuộc (O) sao cho NP = AJ. Gọi giao điểm của P B và P C lần lượt với JS và JT là Q và R. Chứng minh rằng Q, R, D thẳng hàng. + Cho hình thang ABCD vuông tại A và B với BC < AD. Gọi ω là đường tròn tâm C đi qua B. Giả sử là một tiếp tuyến của ω sao cho vuông góc với BD đồng thời cắt tia đối tia AB tại E. F thuộc đường thẳng CD sao cho EF k AD. P là hình chiếu vuông góc của F trên M là trung điểm của cạnh AB. Chứng minh rằng đường tròn ngoại tiếp tam giác EPM tiếp xúc với ω.
Đề thi HSG lớp 12 môn Toán lần 4 năm 2022 2023 trường THPT Giao Thủy Nam Định
Nội dung Đề thi HSG lớp 12 môn Toán lần 4 năm 2022 2023 trường THPT Giao Thủy Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử học sinh giỏi môn Toán lớp 12 THPT lần 4 năm học 2022 – 2023 trường THPT Giao Thủy, tỉnh Nam Định; đề thi gồm hai phần: Phần I: Trắc nghiệm (Thí sinh chọn một đáp án viết câu trả lời vào tờ giấy thi) và Phần II: Viết đáp án (Thí sinh viết câu trả lời vào tờ giấy thi theo hàng dọc, viết rõ đơn vị nếu có); thời gian làm bài: 120 phút; đề thi có ma trận, đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề thi HSG Toán lớp 12 lần 4 năm 2022 – 2023 trường THPT Giao Thủy – Nam Định : + Một cuộn đề can hình trụ có đường kính 44,9 cm. Trong thời gian diễn ra AFF cup 2018, người ta đã sử dụng để in các băng rôn, khẩu hiệu cổ vũ cho đội tuyển Việt Nam, do đó đường kính của cuộn đề can còn lại là 12,5 cm. Biết độ dày của tấm đề can là 0,06 cm, hãy tính chiều dài L của tấm đề can đã sử dụng? (Làm tròn đến hàng đơn vị). + Người ta nối trung điểm các cạnh của một hình hộp chữ nhật rồi cắt bỏ các hình chóp tam giác ở các góc của hình hộp như hình vẽ bên. Hình còn lại là một đa diện có số đỉnh và số cạnh là A. đỉnh cạnh. B. đỉnh cạnh. C. đỉnh cạnh. D. đỉnh cạnh. + Cho đồ thị hàm số và như hình vẽ bên. Biết đồ thị của hàm số là một Parabol đỉnh có tung độ bằng và là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là thỏa mãn. Diện tích hình phẳng giới hạn bởi 2 đồ thị hàm số và gần nhất với giá trị nào dưới đây? File WORD (dành cho quý thầy, cô):
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Nam Định
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm hai phần: Phần I: Trắc nghiệm (thí sinh chọn một đáp án và ghi vào tờ giấy thi) và Phần II: Viết đáp án (viết câu trả lời vào tờ giấy thi theo hàng dọc, viết đơn vị nếu có), thời gian làm bài: 120 phút; đề thi có đáp án MÃ ĐỀ 201 MÃ ĐỀ 202 MÃ ĐỀ 203 MÃ ĐỀ 204. Trích dẫn Đề thi chọn học sinh giỏi Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho hai hình cầu có bán kính lần lượt là r cm 1 5 và r cm 2 10 tiếp xúc với nhau. Một hình nón (N) có các đường sinh tiếp xúc với hai hình cầu và có mặt đáy tiếp xúc với hình cầu lớn như hình vẽ. Diện tích xung quanh của hình nón (N) bằng? + Cho khối trụ T có trục OO’, bán kính r = 6 và thể tích là V. Cắt khối trụ T thành hai phần bởi mặt phẳng song song với trục và cách trục OO’ một khoảng bằng 3 (tham khảo hình vẽ). Gọi V1 là thể tích phần không chứa trục OO’. Tính tỉ số V1/V. + Cho hàm số 43 2 f x mx nx px qx r. Biết rằng đồ thị hàm số y fx cắt trục hoành tại ba điểm có hoành độ abc theo thứ tự lập thành cấp số cộng có công sai d > 0. Gọi S là tập hợp các nghiệm của phương trình 2 d fx fb. Hỏi tập S có bao nhiêu phần tử? File WORD (dành cho quý thầy, cô):