Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề rà soát chất lượng lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Ba Vì Hà Nội

Nội dung Đề rà soát chất lượng lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Ba Vì Hà Nội Bản PDF - Nội dung bài viết Đề rà soát chất lượng lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Ba Vì Hà Nội Đề rà soát chất lượng lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Ba Vì Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Trong kỳ thi đề rà soát chất lượng học sinh lớp 9 môn Toán năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội, các em sẽ phải giải các bài toán với nội dung hấp dẫn và thách thức. Dưới đây là một số câu hỏi trong đề thi: 1. Đề bài: Hai người làm chung một công việc, sau 12 giờ sẽ xong. Nếu người thứ nhất làm một mình trong 6 giờ, người thứ hai làm một mình trong 10 giờ thì cả hai người hoàn thành được 75% công việc. Hãy tính thời gian mỗi người hoàn thành công việc khi làm riêng. 2. Đề bài: Tính diện tích của hình tròn trung tâm trong sân bóng đá 11 người, biết bán kính là 9,15m (lấy pi = 3,14), kết quả làm tròn đến chữ số thập phân thứ nhất. 3. Đề bài: Cho đường tròn (O), đường kính AB. Trên tiếp tuyến của đường tròn (O) tại A lấy điểm M. Từ M vẽ tiếp tuyến thứ hai MC với đường tròn (O). Kẻ CH vuông góc với AB (H thuộc AB), MB cắt đường (O) tại K và cắt CH tại P. Hãy chứng minh các điều kiện liên quan trong bài toán này. Đề thi chứa đựng nhiều khái niệm và kỹ năng Toán học đòi hỏi các em phải áp dụng kiến thức vào thực hành một cách linh hoạt và chính xác. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 lần 5 năm 2023 - 2024 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 lần 05 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Kinh Môn, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 5 năm 2023 – 2024 phòng GD&ĐT Kinh Môn – Hải Dương : + Một đội xe vận tải dự định điều một số xe cùng loại đi vận chuyển 30 tấn hàng. Lúc sắp khởi hành, đội xe đó được giao thêm 15 tấn hàng nữa. Do đó, đội xe được điều thêm 4 xe cùng loại trên nên mỗi xe chở ít hơn 1 tấn so với dự định. Hỏi lúc đầu đội xe có bao nhiêu chiếc? Biết rằng các xe chở như nhau. + Người ta xây dựng cây cầu Dinh qua sông Kinh Thầy nối thị xã Kinh Môn (Hải Dương) với huyện Thủy Nguyên (Hải Phòng), cầu được trang trí khung thép trên thành cầu như hình vẽ. Nếu biết độ dài BC = 80m. Tính chiều cao từ điểm A xuống mặt của cầu (làm tròn đến chữ số thập phân thứ nhất). + Cho điểm M nằm ngoài đường tròn (O ; R). Từ điểm M ở ngoài đường tròn kẻ hai tiếp tuyến MA, MB với đường tròn đó (A, B là các tiếp điểm). Qua điểm A kẻ đường thẳng song song với MB cắt đường tròn (O ; R) tại C. Nối MC cắt đường tròn (O; R) tại D. Tia AD cắt MB tại E. a) Chứng minh MAOB là tứ giác nội tiếp. b) Chứng minh EM = EB và tìm vị trí của điểm M để BD ⊥ MA.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Quan Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quan Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Quan Sơn – Thanh Hóa : + Cho đường thẳng (d): y = ax + b. Tìm a b để đường thẳng (d) đi qua điểm A(1;3) và song song với đường thẳng (d’): y = 5x + 3. + Cho phương trình: x2 – 2(m + 1)x + m2 – 2m + 5 = 0 (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn. + Cho đường tròn (O) đường kính AB, lấy điểm C thuộc (O) (C khác A và B, tiếp tuyến của đường tròn tại B cắt AC ở K. Từ K kẻ tiếp tuyến KD với đường tròn (O) (D là tiếp điểm khác B). 1. Chứng minh tứ giác BODK nội tiếp. 2. Biết OK cắt BD tại I. Chứng minh KC.KA = KI.KO. 3. Gọi E là trung điểm của AC, kẻ đường kính CF của đường tròn (O), FE cắt AI tại H. Chứng minh H là trung điểm của AI.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 17 tháng 04 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Đống Đa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ô tô đi từ A đến B dài 90km. Khi về ô tô đi theo đường khác dài hơn 10km và mỗi giờ ô tô đi được nhiều hơn lúc đi 10km nên thời gian về ít hơn thời gian đi là 15 phút. Tính vận tốc lúc đi và lúc về? + Một lon nước ngọt hình trụ có đường kính đáy là 6cm, độ dài trục là 11cm. Tính thể tích lon nước ngọt (cho pi = 3,14). + Cho đường tròn tâm O, đường kính AB và d là một tiếp tuyến của đường tròn (O) tại điểm A. Trên đường thẳng d lấy điểm M (khác A) và trên đoạn OB lấy điểm N (khác O và B). Đường thẳng MN cắt đường tròn (O) tại hai điểm C và D (C nằm giữa M và D). Gọi H là trung điểm của đoạn thẳng CD. 1) Chứng minh 4 điểm A, O, H, M cùng nằm trên một đường tròn. 2) Chứng minh MA2 = MC.MD. 3) Đường thẳng qua D song song với MO cắt AB và BC lần lượt tại K và F. Chứng minh tứ giác AHKD nội tiếp và K là trung điểm của đoạn thẳng DF.
Đề khảo sát Toán 9 năm 2023 - 2024 phòng GDĐT Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Đông Anh, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Đông Anh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một người đi xe đạp từ A đến B cách nhau 24 km. Khi từ B về A người đó tăng vận tốc thêm 4 km/h so với lúc đi. Vì vậy thời gian về ít hơn thời gian đi là 30 phút. Tính vận tốc của người đi xe đạp đó, khi đi từ A đến B. + Một hộp sữa Ông Thọ hình trụ có chiều cao là 8cm và bán kính đáy là 3,5 cm. Nhà sản xuất đã dán giấy xung quanh hộp sữa để ghi các thông tin về sản phẩm. Hãy tính diện tích giấy cần dùng cho 1 hộp sữa. (Coi mép giấy dán, các mép của hộp sữa và độ dày của giấy in không đáng kể). + Cho đường tròn (O), đường kính AB. Dây CD vuông góc với đường kính AB tại H (H khác O, A và B). E là một điểm thuộc cung nhỏ BD (E khác B và D); AE cắt CD tại F. 1) Chứng minh: Tứ giác BEFH nội tiếp đường tròn. 2) Chứng minh: H là trung điểm của CD và CD2 = 4.AH.HB. 3) Đường thẳng đi qua H song song với CE cắt đường thẳng AE và BE lần lượt tại I và K. Lấy G là trung điểm của đoan thẳng IK. Hỏi tam giác DGK có là tam giác cân được hay không?