Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT Nguyễn Trãi - Thái Bình

Ngày … tháng 06 năm 2020, trường THPT Nguyễn Trãi, huyện Vũ Thư, tỉnh Thái Bình tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thứ nhất. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT Nguyễn Trãi – Thái Bình gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, cấu trúc đề bám sát đề tham khảo THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán). Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT Nguyễn Trãi – Thái Bình : + Một con cá hồi bơi ngược dòng nước để vượt một khoảng cách 300 km, vận tốc của dòng nước là 6 (km/h). Giả sử vận tốc bơi của cá khi nước yên lặng là v (km/h). Năng lượng tiêu hao của cá trong t giờ được tính theo công thức E = c.v^3.t với c là hằng số cho trước, đơn vị của E là Jun. Vận tốc v của cá khi nước đứng yên để năng lượng của cá tiêu hao ít nhất là? + Trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán, cô giáo có 30 câu hỏi khác nhau trong đó có 5 câu hỏi khó, 15 câu hỏi trung bình, 10 câu hỏi dễ. Hỏi có bao nhiêu cách để lập ra đề thi từ 30 câu hỏi đó, sao cho mỗi đề gồm 5 câu khác nhau và mỗi để phải có đủ cả ba loại câu hỏi? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) và có diện tích bằng 27√3/4 (đvdt). Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp S.ABCD thành hai phần, tính thể tích V của phần chứa điểm S.

Nguồn: toanmath.com

Đọc Sách

10 đề phát triển đề tham khảo thi tốt nghiệp THPT năm 2024 môn Toán
Tài liệu gồm 259 trang, tuyển tập 10 đề phát triển đề tham khảo thi tốt nghiệp THPT năm 2024 môn Toán, có đáp án và lời giải chi tiết. Ma trận đề phát triển đề tham khảo thi tốt nghiệp THPT năm 2024 môn Toán:
30 đề phát triển đề tham khảo thi tốt nghiệp THPT năm 2024 môn Toán
Tài liệu gồm 607 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập 30 đề phát triển đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2024 môn Toán, có đáp án và lời giải chi tiết.
Đề khảo sát chất lượng Toán 12 THPT năm 2023 - 2024 sở GDĐT Phú Thọ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Thọ; kỳ thi được diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 12 THPT năm 2023 – 2024 sở GD&ĐT Phú Thọ : + Cho khối trụ có hai đáy lần lượt là hình tròn tâm O, O’ và chiều cao bằng 2a. Một mặt phẳng đi qua tâm O, tạo với OO’ một góc 30° đồng thời cắt hai đường tròn tâm O, O’ tại bốn điểm tạo thành bốn đỉnh của một hình thang có đáy lớn gấp đôi đáy nhỏ và diện tích bằng 2a2. Thể tích của khối trụ đã cho bằng? + Cho hàm số f(x) liên tục trên R và thỏa mãn. Đồ thị hàm số g (x) = ax3 + bx2 + cx – 9 cắt đồ thị hàm số f(x) tại 3 điểm có hoành độ là 1; 2; 3. Hình phẳng giới hạn bởi đồ thị hai hàm số f(x) và g(x) có diện tích bằng? + Cho tập hợp A = {1; 2; 3; …; 11}. Chọn ngẫu nhiên 4 số từ A. Xác suất để tổng 4 số được chọn là một số lẻ bằng?
Đề khảo sát lần 1 Toán 12 năm 2023 - 2024 trường THPT Đinh Tiên Hoàng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát lần 1 môn Toán 12 năm học 2023 – 2024 trường THPT Đinh Tiên Hoàng, thành phố Hà Nội; đề thi có đáp án mã đề 121 – 122 – 123 – 124 – 125 – 126 – 127 – 128. Trích dẫn Đề khảo sát lần 1 Toán 12 năm 2023 – 2024 trường THPT Đinh Tiên Hoàng – Hà Nội : + Anh Nam là sinh viên mới ra trường, nhận được việc làm với mức lương 6 triệu đồng/tháng. Anh ấy dự định hằng tháng sẽ trích ra ít nhất a% lương của mình để gửi tiết kiệm, với mong muốn là sau đúng 2 năm kể từ lần gửi đầu tiên và sau lần gửi cuối cùng đúng 1 tháng tổng số tiền cả gốc và lãi thu được đủ để mua một chiếc xe máy trị giá 25 triệu đồng. Biết rằng lãi suất là 0, 55% / tháng, hai lần gửi liên tiếp cách nhau 1 tháng và theo hình thức lãi kép, đồng thời lãi suất và lương không thay đổi trong suốt thời gian gửi. Hỏi a gần nhất với số nào sau đây? + Cho G là thập giác đều và M là tập hợp 11 điểm gồm 10 đỉnh của thập giác và tâm của G (tham khảo hình vẽ). Chọn ngẫu nhiên 3 điểm thuộc M, xác suất để 3 điểm được chọn lập thành một tam giác bằng? + Trong không gian Oxyz, cho hai điểm A(0; 1; 2), B(2; 1; −8). Từ điểm M(−3; 9; 5) kẻ được bao nhiêu đường thẳng cắt mặt cầu đường kính AB tại hai điểm C, D thỏa mãn MC + MD = 24.