Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa cung và dây

Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa cung và dây Bản PDF Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa cung và dây bao gồm 07 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề này.

Trong tài liệu, chúng ta sẽ tìm hiểu về hai định lí quan trọng. Định lí 1 khẳng định rằng hai cung bằng nhau thì căng hai dây bằng nhau, và ngược lại. Định lí 2 cho biết rằng cung lớn hơn sẽ căng dây lớn hơn, và dây lớn hơn sẽ căng cung lớn hơn.

Thêm vào đó, tài liệu cũng giải thích rõ ràng về các trường hợp bổ sung như: hai cung bị chắn giữa hai dây song song bằng nhau, đường kính đi qua trung điểm của cung hay dây sẽ gặp những tính chất đặc biệt như đi qua điểm chính giữa của cung hay dây, hoặc vuông góc với dây hoặc cung.

Bên cạnh đó, tài liệu cũng cung cấp file WORD dành cho giáo viên với các bài tập thực hành để học sinh ôn tập và kiểm tra kiến thức của mình. Điều này giúp học sinh hiểu rõ hơn về liên hệ giữa cung và dây trong đồ họa hình học.

Với tài liệu này, học sinh sẽ được hướng dẫn một cách chi tiết, dễ hiểu và thú vị về chủ đề liên hệ giữa cung và dây trong môn Toán lớp 9.

Nguồn: sytu.vn

Đọc Sách

Bài giảng căn bậc hai, căn bậc ba Nguyễn Tài Chung
Nội dung Bài giảng căn bậc hai, căn bậc ba Nguyễn Tài Chung Bản PDF - Nội dung bài viết Bài giảng căn bậc hai, căn bậc ba Nguyễn Tài Chung Bài giảng căn bậc hai, căn bậc ba Nguyễn Tài Chung Được biên soạn bởi thầy giáo Nguyễn Tài Chung, tài liệu gồm tổng cộng 37 trang, đặc biệt dành cho học sinh lớp 9.1 để giúp họ hiểu rõ hơn về căn bậc hai và căn bậc ba trong chương trình Toán. Tài liệu bao gồm tóm tắt lý thuyết và bài tập chọn lọc theo chuyên đề, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài toán. Phần tóm tắt lý thuyết bao gồm các phần sau: 1. Căn bậc hai và đẳng thức √A2 = |A|. 2. Liên hệ giữa phép nhân và phép khai phương. 3. Liên hệ giữa phép chia và phép khai phương. 4. Bảng căn bậc hai. 5. Biến đổi đơn giản biểu thức chứa căn bậc hai. 6. Rút gọn biểu thức chứa căn bậc hai. 7. Căn bậc ba. Bên cạnh phần tóm tắt lý thuyết, tài liệu còn cung cấp phần bài tập và lời giải chi tiết để học sinh có thể tự kiểm tra và đánh giá kiến thức của mình. Cuối cùng là phần ôn tập chương I, với đề bài và lời giải, giúp học sinh ôn tập lại toàn bộ kiến thức đã học. Với cách biên soạn linh hoạt và chuyên sâu, tài liệu của thầy Nguyễn Tài Chung không chỉ giúp học sinh hiểu rõ hơn về căn bậc hai, căn bậc ba mà còn rèn luyện kỹ năng làm bài toán và ôn tập hiệu quả.
Chuyên đề căn bậc hai và căn bậc ba Bùi Đức Phương
Nội dung Chuyên đề căn bậc hai và căn bậc ba Bùi Đức Phương Bản PDF - Nội dung bài viết Chuyên đề căn bậc hai và căn bậc ba Bùi Đức Phương Chuyên đề căn bậc hai và căn bậc ba Bùi Đức Phương Chuyên đề căn bậc hai và căn bậc ba do thầy giáo Bùi Đức Phương biên soạn là tài liệu giáo khoa bao gồm 40 trang, dành cho học sinh lớp 9. Tài liệu tổng hợp kiến thức và hướng dẫn phương pháp giải một số dạng toán quan trọng trong chương trình môn Toán. Bài 1: Căn bậc hai. Dạng 1 là việc tìm căn bậc hai của một số, phương pháp giải đề cập đến định nghĩa và tính chất của căn bậc hai. Dạng 2 là so sánh biểu thức không sử dụng máy tính, phương pháp giải đề cập đến các tính chất của căn bậc hai. Dạng 3 là biểu diễn hình học căn thức sử dụng thước kẻ và pa, phương pháp giải đề cập đến các tính chất về dựng hình, đặc biệt là dựng hình vuông, tam giác vuông để biết độ dài. Bài 2: Căn thức bậc hai. Dạng 4 là tìm điều kiện xác định của căn bậc hai, phương pháp giải bao gồm các trường hợp khi biểu thức có nghĩa hoặc không. Dạng 5 là rút gọn các căn thức đơn giản, phương pháp giải sử dụng các tính chất của căn bậc hai. Bài 3: Liên hệ giữa phép nhân, phép chia & phép khai phương. Dạng 6 là áp dụng phép nhân, phép chia, phép khai phương để tính giá trị biểu thức, phương pháp giải sử dụng các tính chất phép nhân, phép chia, phép khai phương. Bài 4: Biến đổi biểu thức chứa căn thức bậc hai. Dạng 7 và dạng 8 đề cập đến cách biến đổi biểu thức chứa căn bậc hai, phương pháp giải sử dụng các tính chất phép nhân, phép chia, phép khai phương. Bài 5: Căn bậc ba. Dạng 9 là các dạng bài tập liên quan đến căn bậc ba, phương pháp giải áp dụng định nghĩa và các tính chất của căn bậc ba. Cuối cùng là ôn tập chương I để củng cố kiến thức đã học. Chuyên đề căn bậc hai và căn bậc ba Bùi Đức Phương là tài liệu hữu ích giúp học sinh nắm vững kiến thức và phương pháp giải các dạng toán liên quan đến căn bậc hai và căn bậc ba.
Giải bài toán bằng cách lập phương trình, hệ phương trình Phạm Huy Huân
Nội dung Giải bài toán bằng cách lập phương trình, hệ phương trình Phạm Huy Huân Bản PDF - Nội dung bài viết Giải bài toán bằng phương trình, hệ phương trình - Tài liệu của thầy Phạm Huy Huân Giải bài toán bằng phương trình, hệ phương trình - Tài liệu của thầy Phạm Huy Huân Tài liệu được biên soạn bởi thầy giáo Phạm Huy Huân, gồm tổng cộng 29 trang, hướng dẫn cách giải bài toán bằng cách lập phương trình, hệ phương trình. Đây là tài liệu hữu ích giúp học sinh hiểu rõ và áp dụng kiến thức Toán lớp 9, cũng như ôn tập để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Trên cơ sở hướng dẫn của thầy Phạm Huy Huân, các bước giải bài toán bằng cách lập phương trình được chia thành 3 phần: Bước 1: Lập hệ phương trình Chọn các ẩn số và đặt điều kiện, đơn vị thích hợp cho từng ẩn số. Biểu diễn các đại lượng chưa biết dưới dạng ẩn và các đại lượng đã biết dưới dạng biểu thức. Lập phương trình để thể hiện mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình hoặc hệ phương trình vừa lập được. Bước 3: Kiểm tra lại điều kiện và trả lời câu hỏi đề bài. Ngoài ra, tài liệu của thầy Phạm Huy Huân cũng trình bày một số dạng bài toán điển hình, bao gồm: Dạng 1: Bài toán về quan hệ giữa các số. Dạng 2: Bài toán chuyển động, bao gồm có hoặc không có sự tham gia của dòng nước. Dạng 3: Toán về năng suất và khối lượng công việc. Dạng 4: Toán về phần trăm (%). Dạng 5: Bài toán về công việc làm chung hoặc làm riêng. Dạng 6: Bài toán liên quan đến hình học. Dạng 7: Toán thực tế. Đồng thời, tài liệu cũng cung cấp hướng dẫn cụ thể và chi tiết để giúp học sinh hiểu và áp dụng phương pháp giải bài toán bằng phương trình, hệ phương trình một cách hiệu quả.
Giải toán bằng cách lập phương trình hệ phương trình
Nội dung Giải toán bằng cách lập phương trình hệ phương trình Bản PDF - Nội dung bài viết Giải toán bằng phương pháp lập phương trình - hệ phương trìnhCác loại bài toán chuyển độngBài toán liên quan đến năng suất lao động - công việc Giải toán bằng phương pháp lập phương trình - hệ phương trình Để giải bài toán bằng phương pháp lập phương trình - hệ phương trình, ta cần thực hiện theo các bước sau: Bước 1: Chọn ẩn số và đặt điều kiện nếu cần. Bước 2: Tính các đại lượng theo giả thiết và ẩn số, sau đó lập phương trình hoặc hệ phương trình. Bước 3: Giải phương trình hoặc hệ phương trình đã lập. Bước 4: Kiểm tra điều kiện và đưa ra câu trả lời. Các loại bài toán chuyển động Quãng đường = Vận tốc * Thời gian Vận tốc tỷ lệ nghịch với thời gian và tỷ lệ thuận với quãng đường. Khi hai xe đi ngược chiều gặp nhau: Thời gian đi được bằng nhau và tổng quãng đường bằng quãng đường cần đi. Nếu xe A đuổi kịp xe B, hiệu quãng đường đi được bằng quãng đường giữa A và B. Với Ca nô, tàu xuồng trên dòng nước: Vận tốc = Vận tốc riêng ± Vận tốc dòng nước. Bài toán liên quan đến năng suất lao động - công việc Trong các bài toán này, khối lượng công việc = năng suất lao động * thời gian. Với các bước hướng dẫn và ví dụ cụ thể, học sinh sẽ dễ dàng áp dụng phương pháp lập phương trình để giải các bài toán Toán lớp 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Bằng cách thực hành nhiều bài tập, học sinh sẽ nâng cao khả năng giải quyết vấn đề và hiểu sâu hơn về các khái niệm Toán học.