Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi năm học 2017 - 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải - Thái Bình

Đề thi học sinh giỏi (HSG) năm học 2017 – 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải – Thái Bình gồm 5 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi : + Tìm các số a, b sao cho đa thức f(x) = x^4 + ax^3 + bx – 1 chia hết cho đa thức x^2 – 3x + 2. + Chứng minh rằng : B = 4x(x + y)(x + y + z)(x + z) + y^2.z^2 là một số chính phương với x, y, z là các số nguyên. + Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc với BC tại H. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. [ads] a) Biết AB = 6 cm, HC = 6,4 cm. Tính BC, AC b) Chứng minh: DE^3 = BC.BD.CE c) Đường thẳng kẻ qua B vuông góc với BC cắt HD tại M, đường thẳng kẻ qua C vuông góc với BC cắt HE tại N. Chứng minh M, A, N thẳng hàng d) Chứng minh rằng : BN, CM, DE đồng quy + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + c^x + d (với a, b, c là các số thực). Biết f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị biểu thức A = f(8) – f(-4).

Nguồn: toanmath.com

Đọc Sách

Đề Olympic Toán 9 lần 1 năm 2023 - 2024 trường THPT chuyên Lê Quý Đôn - Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic môn Toán 9 lần thứ nhất năm học 2023 – 2024 trường THPT chuyên Lê Quý Đôn, tỉnh Điện Biên; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2024. Trích dẫn Đề Olympic Toán 9 lần 1 năm 2023 – 2024 trường THPT chuyên Lê Quý Đôn – Điện Biên : + Cho phương trình: x2 + mx + 2m – 7 = 0 (1) (ẩn x) với m là tham số nguyên. a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1, x2; tìm m để 9×1 = x22. b) Chứng minh rằng m là số nguyên lẻ thì phương trình (1) không có nghiệm hữu tỉ. + Cho tam giác nhọn ABC (AB < AC), ba đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm của EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a) Chứng minh AEF ~ ABC. b) Chứng minh IP = IQ. c) Gọi M là trung điểm của AH. Chứng minh I là trực tâm của tam giác BMC.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2024.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) có ba đường cao AD, BE, CF đồng quy tại H. Đường tròn đường kính AC cắt đoạn thẳng BH tại M. Trên đoạn thẳng HC lấy điểm N sao cho AM = AN. a) Chứng minh EB.EH = ED.EF. b) Chứng minh N thuộc đường tròn ngoại tiếp tam giác ABD. + Cho tam giác nhọn ABC (AB < AC) có hai đường cao AE, BD cắt nhau tại H. Đường trung trực của đoạn thẳng DH cắt AE tại M, cắt đường tròn ngoại tiếp tam giác BCD tại P và Q (P nằm giữa M và Q). a) Chứng minh MD là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD. b) Chứng minh APM + AQM = CBD. c) Đường thẳng AQ cắt đường tròn ngoại tiếp tam giác BCD tại F (F khác Q). Chứng minh APB = FPB. + Cho p là số nguyên tố. Tìm tất cả các số nguyên dương b sao cho nghiệm của phương trình bậc hai x2 – bx + bp = 0 là số nguyên.