Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề phát triển đề minh họa tốt nghiệp THPT 2021 môn Toán - Lê Quang Xe

Tài liệu gồm 65 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tuyển tập 4 đề phát triển đề minh họa tốt nghiệp THPT 2021 môn Toán, có đáp án và lời giải chi tiết; đây là các đề thi có cấu trúc được xây dựng dựa trên ma trận đề minh họa tốt nghiệp THPT 2021 môn Toán mà Bộ Giáo dục và Đào tạo công bố hôm 31 tháng 03 năm 2021. Cấu trúc đề minh họa tốt nghiệp THPT 2021 môn Toán: + Hoán vị – Chỉnh hợp – Tổ hợp. + Cấp số cộng (nhân). + Tính đơn điệu của hàm số (dựa vào BBT). + Cực trị của hàm số khi biết BBT. + Đếm số cực trị của hàm số khi biết bảng dấu đạo hàm. + Tiệm cận của đồ thị. + Nhận dạng hàm số khi biết đồ thị. + Sự tương giao đồ thị (tìm hoành độ hoặc tung độ giao điểm). + Logarit (tính và rút gọn biểu thức). + Hàm số mũ – logarits (tính đạo hàm hàm mũ). + Lũy thừa (biểu diễn căn bậc n dưới dạng lũy thừa). + Phương trình mũ – logarits (tìm nghiệm của phương trình mũ). + Phương trình mũ – logarits (tìm nghiệm của phương trình logarits). + Tính nguyên hàm – tích phân (nguyên hàm hàm đa thức). + Tính nguyên hàm – tích phân (nguyên hàm lượng giác). + Tính nguyên hàm – tích phân (tính tích phân dựa vào tính chất). + Tính nguyên hàm – tích phân (tính tích của phân hàm đa thức). + Số phức (các khái niệm cơ bản về số phức). + Số phức (các phép toán về số phức). + Số phức (các khái niệm cơ bản về số phức). + Thể tích khối đa diện (khối chóp biết chiều cao và diện tích đáy). + Thể tích khối đa diện (khối lăng trụ biết chiều cao và diện tích đáy). + Thể tích nón – trụ – cầu (thể tích khối nón). + Diện tích nón – trụ – cầu (diện tích khối trụ). + Hệ Oxyz (tọa độ trung điểm đoạn). + Hệ Oxyz (tìm tâm và tính bán kính mặt cầu). + Phương trình mặt phẳng (xét vị trí của điểm và măt phẳng). + Phương trình đường thẳng (tìm vectơ chỉ phương). + Xác suất của biến cố. + Tính đơn điệu của hàm số. + GTLN – GTNN của hàm số trên đoạn. + Bất phương trình mũ – logarits. + Tính nguyên hàm – tích phân (khi biết tích phân khác). + Số phức (các phép toán – tính modun của tích). + Góc giữa đường thẳng và mặt phẳng. + Khoảng cách (khoảng cách từ một điểm đến một mặt phẳng). + Hệ Oxyz (lập phương trình mặt cầu). + Phương trình đường thẳng (lập phương trình đường thẳng qua hai điểm). + GTLN – GTNN của hàm số hợp trên đoạn khi biết đồ thị y’. + Bất phương trình mũ – logarits (bất phương trình liên quan đến hai biến số). + Tính tích phân hàm hợp khi biết hàm f(x) cho bởi nhiều hàm. + Số phức (tìm số số phức thỏa mãn điều kiện cho trước). + Thể tích khối đa diện (khối chóp). + Diện tích nón – trụ – cầu (diện tích khối trụ). + Phương trình mặt phẳng, phương trình đường thẳng trong không gian (lập phương trình đường thẳng thỏa mãn yêu cầu). + Số điểm cực trị của hàm hợp khi biết BBT của f'(x). + Phương trình mũ – logarits (đếm số nghiệm của phương trình). + Ứng dụng tích phân (tính tỉ số diện tích hình phẳng). + Min – max số phức. + Hệ Oxyz, phương trình mặt phẳng, phương trình đường thẳng trong không gian.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 12 năm 2020 - 2021 trường THPT Thiệu Hóa - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng (KSCL) môn Toán lớp 12 năm học 2020 – 2021 trường THPT Thiệu Hóa – Thanh Hóa. Trích dẫn đề khảo sát Toán 12 năm 2020 – 2021 trường THPT Thiệu Hóa – Thanh Hóa : + Trong không gian Oxyz, cho mặt phẳng (P): x + y – z – 3 = 0 và hai điểm A(1;1;1) và B(-3;-3;-3). Mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại điểm C. Biết rằng C luôn thuộc một đường tròn cố định, bán kính của đường tròn đó bằng? + Từ một tấm tôn có kích thước 90 cm x 300 cm, người ta làm một máng chứa nước thải trên mái nhà, mặt cắt ngang của máng là hình thang cân ABCD đáy lớn AD, AB = BC = CD = 30cm (minh hoạ hình bên). Thể tích lớn nhất của máng bằng? + Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Tìm tất cả các giá trị của tham số m để hàm số h(x) = |f2(x) + f(x) + m| có đúng 3 điểm cực trị.
Đề khảo sát Toán 12 lần 3 năm 2020 - 2021 trường Lê Quý Đôn - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát Toán 12 lần 3 năm học 2020 – 2021 trường THPT Lê Quý Đôn – Quảng Ninh; kỳ thi nhằm giúp các em học sinh rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán. Trích dẫn đề khảo sát Toán 12 lần 3 năm 2020 – 2021 trường Lê Quý Đôn – Quảng Ninh : + Một nhóm có 10 học sinh gồm 6 nam (trong đó có Bình) và 4 nữ (trong đó có An) được xếp ngẫu nhiên vào 10 ghế trên một hàng ngang để dự lễ khai giảng năm học. Xác suất để xếp được giữa 2 bạn nữ gần nhau có đúng 2 bạn nam, đồng thời Bình không ngồi cạnh An là? + Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ, biết f(x) đạt cực tiểu tại điểm x = 1 và thỏa mãn [f(x) + 1] và [f(x) – 1] lần lượt chia hết cho (x – 1)2 và (x + 1)2. Gọi S1, S2 lần lượt là diện tích hình phẳng như trong hình bên dưới. Tính 2S1 – S2. + Người ta cần đổ một ống cống thoát nước hình trụ với chiều cao 2m, độ dày thành ống là 10cm. Đường kính ống là 50cm. Tính lượng bê tông cần dùng để làm ra ống thoát nước đó?
Đề khảo sát Toán 12 lần 3 năm 2020 - 2021 trường THPT Thành Nhân - TP HCM
Nhằm chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2021 do Bộ Giáo dục và Đào tạo tổ chức, thứ Năm ngày 09 tháng 06 năm 2021, trường THPT Thành Nhân, quận Tân Phú, thành phố Hồ Chí Minh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ ba. Đề khảo sát Toán 12 lần 3 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM mã đề 101 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 3 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM : + Trong không gian Oxyz cho điểm A(0;5;8) và hai mặt cầu 2 2 2 S x y z 25 0 2 2 2 S x y z y 16 23 0. Gọi M là điểm thuộc cả hai mặt cầu S S. Khoảng cách AM nhỏ nhất bằng? + Gọi S là tập hợp các số thực m sao cho với mỗi m S có đúng một số phức thỏa mãn z m 4 và 6 z z là số thuần ảo. Tính tổng của các phần tử của tập S. + Trong không gian Oxyz cho điểm B(0;9;0); M(1;5;4). Mặt phẳng P qua hai điểm B M P cắt chiều dương các trục Ox; Oz lần lượt tại A C. Thể tích tứ diện OABC nhỏ nhất bằng?
15 đề tham khảo ôn thi tốt nghiệp THPT 2021 môn Toán sở GDĐT Gia Lai
Tài liệu gồm 375 trang, tuyển tập 15 đề tham khảo ôn thi tốt nghiệp THPT 2021 môn Toán sở GD&ĐT Gia Lai, có đáp án và lời giải chi tiết. Trích dẫn 15 đề tham khảo ôn thi tốt nghiệp THPT 2021 môn Toán sở GD&ĐT Gia Lai: + Tính diện tích vòng cung: Lối đi hình vòng cung ở dưới là một phần của khối trụ tròn xoay. Gọi R là bán kính của khối trụ. Áp dụng định lý sin ta có: 0 8 2 4 2 sin135 R R. Vậy nên cung tròn chắn bởi dây cung AB có độ lớn 2. Vậy độ dài của cung AB là 4 2 2 2 2 AB l R. Diện tích vòng cung là: 1 25 50 2 AB S l. Tính diện tích của miền ABCDEF: 1 2 60 76 8 4 ABCDEF OAB S R S. Vậy diện tích xung quanh của bể cá là: 2 1 S S S xq ABCDEF 2 2.25.6 2.25 673,879 m. Vậy số tiền làm bể cá là: 673,879 500.000 336.939.500 đồng. + Phần màu nhạt là phần giao nhau của hai khối cầu. Gọi h là chiều cao của chỏm cầu. Ta có 2 2.25 40 5 2 2 R d h cm (d là khoảng cách giữa hai tâm). Diện tích xung quanh của chỏm cầu là: 2 xq S Rh. Vì 2 khối cầu bằng nhau nên 2 hình chỏm cầu bằng nhau: xq S khối trang sức 2 (xq S khối cầu xq S chỏm cầu). Khối trang sức có 2 2 2 2 2 4 2 2 4 25 2 25 5 4500 0 45 xq S R Rh cm m. Vậy số tiền dùng để mạ vàng khối trang sức đó là 0 45 470.00 66 0 0 4.0 0 đồng. + Ta có 1 1 z i iz i 3 5 2 2 6 10 4 1 2 2 iz i z i 1 2 4 3 6 3 12 2. Gọi A là điểm biểu diễn số phức 1 2iz, B là điểm biểu diễn số phức 2 3z. Từ 1 và 2 suy ra điểm A nằm trên đường tròn tâm I 1 6 10 và bán kính 1 R 4; điểm B nằm trên đường tròn tâm I 2 6 3 và bán kính 2 R.