Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra sát hạch Toán 12 lần 1 năm 2018 - 2019 trường Thuận Thành 2 - Bắc Ninh

Đề kiểm tra sát hạch Toán 12 lần 1 năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh được biên soạn nhằm giúp học sinh khối 12 củng cố lại các kiến thứ Toán 10, Toán 11 và Toán 12 đã được học, đồng thời giúp các em cọ xát với các bài toán vận dụng, vận dụng bậc cao để nâng cao kỹ năng giải toán, hướng đến mục tiêu ở kỳ thi THPT Quốc gia 2019 môn Toán. Đề kiểm tra sát hạch Toán 12 lần 1 năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh mã đề 001 gồm 7 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, yêu cầu học sinh hoàn thành bài làm trong thời gian 90 phút. Trích dẫn đề kiểm tra sát hạch Toán 12 lần 1 năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh : + Cho miếng bìa hình vuông cạnh bằng 5m. Để làm một mô hình kim tự tháp Ai Cập, người ta cắt bỏ 4 tam giác cân bằng nhau có cạnh đáy chính là cạnh của hình vuông rồi gấp lên, ghép lại thành hình chóp tứ giác đều (tham khảo hình vẽ bên dưới). Để mô hình có thể tích lớn nhất thì cạnh đáy của mô hình bằng bao nhiêu? [ads] + Cho hình nón tròn xoay nằm giữa hai mặt phẳng song song (P) và (Q) như hình vẽ. Kẻ đường cao SO của hình nón và gọi I là trung điểm của SO. Lấy M thuộc (P), N thuộc (Q) sao cho MN = a và đi qua I cắt mặt nón tại E và F đồng thời tạo với SO một góc β. Biết góc giữa đường cao và đường sinh của hình nón bằng 45 độ. Độ dài đoạn EF bằng? + Một đề trắc nghiệm gồm 20 câu, mỗi câu có 4 đáp án và chỉ có một đáp án đúng. Bạn Anh làm đúng 12 câu, còn 8 câu bạn Anh đánh hú họa vào đáp án mà Anh cho là đúng. Mỗi câu đúng được 0,5 điểm. Tính xác suất để Anh được 9 điểm?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 12 thi TN THPT 2024 lần 1 trường THPT Ba Đình - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán 12 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Cho hình vuông ABCD cạnh a. Trên đường thẳng vuông góc với (ABCD) tại A lấy điểm S di động không trùng với A. Hình chiếu vuông góc của A lên SB SD lần lượt tại H K. Tìm giá trị lớn nhất của thể tích khối tứ diện ACHK. + Với hai số thực a b bất kì, ta kí hiệu 2 3 a b f x xa xb x. Biết rằng luôn tồn tại duy nhất số thực 0 x để 0 min a b a b x R f xf với mọi số thực a b thỏa mãn b a a b và 0 a b. Số 0 x bằng? + Cho hình lập phương có cạnh bằng a và một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương. Gọi 1 S là diện tích 6 mặt của hình lập phương 2 S là diện tích xung quanh của hình trụ. Hãy tính tỉ số 2 1 S S.
Đề KSCL Toán thi TN THPT 2023 lần 2 trường chuyên Lam Sơn - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng môn Toán ôn thi tốt nghiệp THPT năm học 2022 – 2023 lần 2 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Hai ngày 22 tháng 05 năm 2023. Trích dẫn Đề KSCL Toán thi TN THPT 2023 lần 2 trường chuyên Lam Sơn – Thanh Hóa : + Có hai cái cốc, một cái hình trụ và một cái hình nón cụt có kích thước như hình vẽ. Cốc hình trụ đựng đầy nước được rót sang cốc hình nón cụt đến khi thấy chiều cao phần nước còn lại trong cốc hình trụ chỉ bằng một nửa chiều cao của phần nước trong cốc hình nón cụt thì dừng lại. Hỏi khi đó chiều cao h của phần nước còn lại trong cốc hình trụ thuộc khoảng nào sau đây? + Cho hai hàm số y = f(x) và y = g(x) xác định trên R. Hàm số y = f(x) có đồ thị là đường gấp khúc (C) (nét đậm). Hàm số y = g(x) có đồ thị là đường thẳng d (hình vẽ). Số điểm cực trị của hàm số y = |f(|x|) − g(|x|)| là? + Trong không gian Oxyz, cho tứ diện OABC với O(0;0;0), A(1;-2;2), B(2;2;1) và C(-5/3;-2/3;14/3). Gọi (S) là mặt cầu đường kính OA. Một tiếp tuyến MN thay đổi tiếp xúc với (S) tại tiếp điểm H (M thuộc tia AC, N thuộc tia OB). Biết khi M, N thay đổi thì H di động trên mặt phẳng (Q) cố định có phương trình ax + by − z + c = 0. Tính a + b + c.
Đề KSCL Toán thi tốt nghiệp THPT 2023 lần 2 trường THPT Ba Đình - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán ôn thi tốt nghiệp THPT năm học 2022 – 2023 lần 2 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án MÃ ĐỀ GỐC. Trích dẫn Đề KSCL Toán thi tốt nghiệp THPT 2023 lần 2 trường THPT Ba Đình – Thanh Hóa : + Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) xyz 220 và ba điểm A(2;0;2), B(4;0;4), C(5;2;4). Gọi M là điểm di dộng trên (P) sao cho có một mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại M. Khi đó độ dài đoạn thẳng CM có giá trị nhỏ nhất là? + Cho hàm số y fx có đồ thị (C) nằm phía trên trục hoành. Hàm số y fx thỏa mãn các điều kiện 2 y 4 và 1 5 0 1 4 2 f f. Diện tích hình phẳng giới hạn bởi (C) và trục hoành gần nhất với số nào dưới đây? + Công thức tính đúng của tổ hợp chập 3 của 10 là? Có 6 bạn nam trong đó có Hoàng và 3 bạn nữ xếp ngẫu nhiên thành một hàng ngang. Xác suất để không có hai bạn nữ nào đứng cạnh nhau và Hoàng đứng ở ngoài cùng bằng?
Đề KSCL học sinh Toán 12 lần 2 năm 2022 - 2023 sở GDĐT Phú Thọ
Nhằm hướng đến kỳ thi tốt nghiệp THPT năm 2023, giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh môn Toán 12 lần 2 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 101); kỳ thi được diễn ra vào thứ Năm ngày 27 tháng 04 năm 2023. Trích dẫn Đề KSCL học sinh Toán 12 lần 2 năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Một khối nón (N) có bán kính đáy bằng R và chiều cao bằng 15, được làm bằng chất liệu không thấm nước, có khối lượng riêng lớn hơn khối lượng riêng của nước. Khối (N) được đặt trong một cái cốc hình trụ đường kính bằng 4R, sao cho đáy của (N) tiếp xúc với đáy của cốc (tham khảo hình vẽ). Đổ nước vào cốc đến khi mức nước đạt độ cao bằng 15 thì lấy khối (N) ra. Độ cao của nước trong cốc sau khi đã lấy khối (N) ra bằng? + Trong không gian Oxyz, cho hai điểm M (1;2;−2) và S(−1;4;3). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho M là trực tâm của tam giác ABC. Thể tích của khối chóp S.ABC bằng? + Trong không gian Oxyz, cho đường thẳng d: (x + 1)/1 = (y + 2)/2 = (z – 2)/-1 và mặt phẳng (P): x + y + 2z – 8 = 0. Tam giác ABC có A(1;2;−2) và trọng tâm G nằm trên d. Khi các đỉnh B, C di động trên (P) sao cho khoảng cách từ A tới đường thẳng BC đạt giá trị lớn nhất, một véctơ chỉ phương của đường thẳng BC là?