Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Diễn Châu Nghệ An

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Diễn Châu Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Diễn Châu Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Diễn Châu Chào quý thầy cô và các em học sinh lớp 8, đây là đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2021 - 2022 do phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An tổ chức. Bài toán đầu tiên yêu cầu chúng ta chứng minh các phát biểu sau trong tam giác vuông ABC: AH2 = BH.CH và AD.AB = AE.AC. Sau đó, điều kiện BAC = 90° được cho, và cần phải chứng minh rằng đường thẳng đi qua O và vuông góc với AF sẽ luôn đi qua 1 điểm cố định. Cuối cùng, chúng ta phải chứng minh rằng trực tâm của tam giác AMN là trung điểm của OH. Phần tiếp theo của đề bài đề cập đến việc chọn 2 số có ước chung lớn nhất khác 1 từ 29 số nguyên dương nhỏ hơn 100. Câu cuối cùng đề cương về bài toán định lý Fermat với điều kiện a3 + b3 = 5c3 + 11d3 và cần chứng minh rằng a + b + c + d chia hết cho 6. Đây là những bài toán thú vị và đòi hỏi sự tư duy logic và khả năng suy luận của các em học sinh. Chúc các em thành công trong việc giải quyết các bài toán này!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 8 vòng 2 năm 2023 - 2024 phòng GDĐT Xuân Trường - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 THCS vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Xuân Trường, tỉnh Nam Định. Trích dẫn Đề thi HSG Toán 8 vòng 2 năm 2023 – 2024 phòng GD&ĐT Xuân Trường – Nam Định : + Một trường THCS có tổ chức cho các em học sinh khối 8 và khối 9 đi trải nghiệm bằng ô tô. Nếu mỗi xe chỉ chở 22 học sinh thì còn thừa một học sinh. Nếu bớt đi một xe ô tô thì có thể phân phối đều số học sinh vào các xe còn lại. Hỏi lúc đầu có bao nhiêu xe ô tô và có tất cả bao nhiêu học sinh đi trải nghiệm? Biết rằng số học sinh trên mỗi xe không vượt quá 32 em. + Thầy giáo viết lên bảng các số tự nhiên liên tiếp từ 1 đến 2024. Hai bạn học sinh thực hiện trò chơi như sau: cứ một bạn thực hiện việc xóa đi hai số bất kỳ trên bảng thì bạn còn lại sẽ viết thay vào đó một số là giá trị tuyệt đối của hiệu hai số vừa xóa. Trò chơi chỉ kết thúc khi trên bảng còn đúng một số. Hỏi số cuối cùng trên bảng có thể là số 2023 được không? + Cho hình vẽ dưới đây là bản thiết kế thi công tầng 1 của một ngôi nhà hai tầng mái bằng. Biết ABC BAH AHG HGF GFE FED EDC DCB 90 AB BC m 6 18 DE m 6 GF m EF m GH DC m 4 7 4. Biết giá thiết kế mỗi mét vuông sàn là 120 nghìn đồng (mỗi sàn là một tầng). Hỏi bác chủ nhà phải trả bao nhiêu tiền để mua bản thiết kế của cả ngôi nhà đó?
Đề thi học sinh giỏi Toán 8 năm 2024 phòng GDĐT Yên Định - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 và chọn đội tuyển vòng 1 dự thi học sinh giỏi Toán 9 cấp tỉnh năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND huyện Yên Định, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi học sinh giỏi Toán 8 năm 2024 phòng GD&ĐT Yên Định – Thanh Hóa : + Tìm tất cả các số nguyên tố p có dạng 2 2 2 p a b c trong đó a, b, c là các số nguyên dương thỏa mãn 4 4 4 abc chia hết cho p. + Cho hình vuông ABCD có cạnh là a. Điểm E thuộc cạnh BC, F là giao điểm của AE và DC, G là giao điểm của DE và BF. Trên tia đối của tia DC lấy điểm M sao cho BE = DM. Gọi T là trung điểm của EM. 1. Chứng minh tam giác AEM vuông cân và ba điểm B, T, D thẳng hàng. 2. Gọi I, K theo thứ tự là giao điểm của AB với CG và DG. Chứng minh IE song song với BD. 3. Tìm vị trí điểm E trên cạnh BC để tổng BK + CF đạt GTNN. + Cho hai số thực dương x, y thoả mãn: x + y + xy = 3. Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Thanh Oai – Hà Nội : + Một xí nghiệp dự định sản xuất 2000 sản phẩm trong 40 ngày. Nhưng nhờ tổ chức hợp lý nên thực tế xí nghiệp đã sản xuất mỗi ngày vượt mức 10 sản phẩm. Do đó xí nghiệp sản xuất không những vượt mức dự định 100 sản phẩm mà còn hoàn thành trước thời hạn. Xí nghiệp đã rút ngắn được số ngày hoàn thành công việc là? + Cho hình vuông ABCD trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N 1) Chứng minh DM = AF và tứ giác AEMD là hình chữ nhật 2) Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng CBH AEH và AC EF 2 3) Chứng minh rằng : 2 1 1 AD AM AN. + Tính độ dài của một chiếc hộp hình lập phương, biết rằng độ dài mỗi cạnh của hộp tăng thêm 2 cm thì diện tích phải sơn 6 mặt bên ngoài của hộp đó tăng thêm 216 cm2.
Đề thi HSG Toán 8 cấp huyện năm 2022 - 2023 phòng GDĐT Sơn Động - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang; đề thi hình thức 60% trắc nghiệm + 40% tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2023. Trích dẫn Đề thi HSG Toán 8 cấp huyện năm 2022 – 2023 phòng GD&ĐT Sơn Động – Bắc Giang : + Một người thợ sử dụng thước ngắm có góc vuông để đo chiều cao của một cây dừa, với các kích thước đo được như hình bên. Khoảng cách từ vị trí gốc cây đến vị trí chân của người thợ là 4,8m và từ vị trí chân đứng thẳng trên mặt đất đến mắt của người ngắm là 1,6m. Hỏi với các kích thước trên thì người thợ đo được chiều cao của cây đó là bao nhiêu? (làm tròn đến mét). + Cho hình vuông ABCD cạnh a, một đường thẳng d bất kỳ đi qua C cắt AB tại E và AD tại F. 1) Chứng minh: BE DF BC CD. 2) Chứng minh: 2 2 BE AE BF AF. 3) Xác định vị trí của đường thẳng d để DF BE 4. + Năm nay, tuổi bố gấp 4 lần tuổi Hoàng. Nếu 5 năm nữa thì tuổi bố gấp 3 lần tuổi Hoàng. Hỏi năm nay Hoàng bao nhiêu tuổi?