Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra kiến thức Toán 12 năm 2020 trường THPT chuyên KHTN - Hà Nội

Nhằm chuẩn bị cho kỳ thi chính thức THPT Quốc gia năm học 2019 – 2020, trường THPT chuyên KHTN – ĐHKHTN – ĐHQGHN tổ chức kiểm tra định kỳ kiến thức môn Toán 12. Đề kiểm tra kiến thức Toán 12 năm 2020 trường THPT chuyên KHTN – Hà Nội mã đề 002 gồm có 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có 01 trang, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm tra kiến thức Toán 12 năm 2020 trường THPT chuyên KHTN – Hà Nội : + Trong mặt phẳng Oxy, gọi A, B lần lượt là điểm biểu diễn của số phức 1 + 2i và −2 + i. Mệnh đề nào dưới đây đúng? A. Tam giác OAB tù. B. Tam giác OAB đều. C. Tam giác OAB vuông và không cân. D. Tam giác OAB vuông cân. + Cho hình nón có đường sinh bằng a và góc ở đỉnh bằng 90◦. Cắt hình nón đó bởi một mặt phẳng đi qua đỉnh của hình nón và tạo với mặt đáy của hình nón một góc bằng 60◦ ta được một thiết diện có diện tích bằng? + Cho hàm số y = x3 − 3x + 1 có đồ thị (C). Xét các điểm A, B thay đổi thuộc (C) sao cho tiếp tuyến của (C) tại A, B song song với nhau. Gọi E, F lần lượt là giao điểm của các tiếp tuyến tại A và B với trục tung. Có bao nhiêu điểm A có hoành độ là số nguyên dương sao cho EF < 2020? + Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông cân tại C, AB = 2a và góc tạo bởi hai mặt phẳng (ABC0) và (ABC) bằng 600. Gọi M, N lần lượt là trung điểm của A0C0 và BC. Mặt phẳng (AMN) chia khối lăng trụ thành hai phần. Thể tích của phần nhỏ bằng? + Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị của hàm số y = (x2 + mx + 2m)/(x + 1) có hai điểm cực trị A, B và tam giác OAB vuông tại O. Tổng tất cả các phần tử của S bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Lào Cai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Lào Cai; đề thi có đáp án mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108 – 109 – 110 – 111 – 112; kỳ thi được diễn ra vào thứ Hai ngày 25 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Lào Cai : + Trong không gian Oxyz, cho hai điểm A(-1;2;5) và B(3;−2;1). Xét khối nón (N) có đỉnh I là trung điểm của AB, đường tròn đáy nằm trên mặt cầu đường kính AB. Khi (N) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của (N) có phương trình dạng x + by + cz + d = 0 (d > 0). Gọi S là tập hợp các giá trị của biểu thức b + c + d .Khi đó? + Có bao nhiêu giá trị thực không âm của tham số m để đồ thị của hàm số có hai điểm cực trị A và B sao cho A, B nằm khác phía và cách đều đường thẳng d. + Cho hình nón đỉnh S, đáy là hình tròn tâm O, bán kính R = 5. Mặt phẳng (a) qua S, cắt hình nón theo thiết diện là tam giác SAB có diện tích bằng 122. Mặt phẳng (a) tạo với đáy hình nón góc 45°; tam giác OAB nhọn. Thể tích V của khối nón tạo nên từ hình nón đã cho bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần thứ nhất sở Giáo dục và Đào tạo tỉnh Sơn La; đề thi có đáp án trắc nghiệm mã đề MĐ 101, MĐ 102, MĐ 103, MĐ 104, MĐ 105, MĐ 106, MĐ 107, MĐ 108; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Sơn La : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt bên SAB là tam giác đều cạnh a3, ABC là tam giác vuông tại A có cạnh AC = a, góc giữa đường thẳng AD và mặt phẳng (SAB) bằng 60°. Thể tích khối chóp S.ABCD bằng? + Trong không gian Oxyz, cho hai mặt cầu (S1): (x − 1)2 + (y − 2)2 + (z − 3)2 = 9; (S2): (x − 1)2 + (y − 2)2 + (z − 3)2 = 16 và điểm A(1;6;0). Xét đường thẳng d di động nhưng luôn tiếp xúc với (S1) đồng thời cắt (S2) tại hai điểm B và C phân biệt. Diện tích lớn nhất của tam giác ABC bằng? + Cho hai mặt cầu (S1) và (S2) đồng tâm I, có bán kính lần lượt là R1 = 2 và R2 = 10. Xét tứ diện ABCD có hai đỉnh A và B nằm trên (S1) và hai đỉnh C và D nằm trên (S2). Thể tích lớn nhất của khối tứ diện ABCD thuộc khoảng nào dưới đây?
Đề thi thử Toán TN THPT 2023 lần 1 trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2023 lần 1 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi (mã đề 123). Trích dẫn Đề thi thử Toán TN THPT 2023 lần 1 trường chuyên Lê Khiết – Quảng Ngãi : + Cho lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân tại B và AB = a3. Hình chiếu vuông góc của A’ lên mặt phẳng (ABC) là điểm H thuộc cạnh AC sao cho HC = 2HA. Mặt bên (ABB’A’) tạo với đáy một góc 60°. Thể tích khối lăng trụ đã cho bằng? + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AB = BC = a3, góc SAB = SCB = 90° và khoảng cách từ A đến mặt phẳng (SBC) bằng a2. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC. + Trong không gian Oxy, cho điểm A(0;0;3) và điểm B thay đổi thuộc mặt phẳng (Oxy) sao 3/2. Gọi C là điểm trên tia Oz thỏa mãn d[C;AB] = d[C;OB] = k. Thể tích của khối tròn xoay tạo bởi tập hợp tất cả các điểm M mà CM =< k thuộc khoảng nào dưới đây?
Đề thi thử TN THPT 2023 môn Toán trường chuyên Biên Hòa - Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán trường THPT chuyên Biên Hòa, tỉnh Hà Nam (mã đề 101). Trích dẫn Đề thi thử TN THPT 2023 môn Toán trường chuyên Biên Hòa – Hà Nam : + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d và mặt phẳng (P): 3x – 3y + 2z + 6 = 0. Khẳng định nào dưới đây đúng? A. d nằm trong (P). B. d song song với (P). C. d vuông góc với (P). D. d cắt và không vuông góc với (P). + Cửa hàng A có đặt trước sảnh một cái nón lớn với chiều cao 1,35 m và sơn cách điệu hoa văn trang trí một phần mặt ngoài của hình nón ứng với cung nhỏ AB như hình vẽ. Biết AB = 1,45 m, ACB = 150° và giá tiền trang trí là 2.000.000 đồng mỗi mét vuông. Hỏi số tiền mà cửa hàng A cần dùng để trang trí là bao nhiêu? + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2;2), B(2;–2;0). Gọi I1(1;1;−1) và I2(3;1;1) là tâm của hai đường tròn nằm trên hai mặt phẳng khác nhau và có chung một dây cung AB. Biết rằng luôn có một mặt cầu (S) đi qua cả hai đường tròn ấy. Tính bán kính R của (S).