Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập phương pháp toạ độ trong mặt phẳng Toán 10 Cánh Diều

Tài liệu gồm 419 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển tập các dạng bài tập tự luận và trắc nghiệm chuyên đề phương pháp toạ độ trong mặt phẳng trong chương trình Toán 10 Cánh Diều, có đáp án và lời giải chi tiết. BÀI 1 . TOẠ ĐỘ CỦA VECTƠ. A. LÝ THUYẾT. B. BÀI TẬP TỰ LUẬN. + Dạng 1. Tìm toạ độ của vectơ. + Dạng 2. Tìm điều kiện để hai vectơ bằng nhau, chứng minh hai vectơ bằng nhau. + Dạng 3. Tìm toạ độ của một điểm thoả mãn điều kiện cho trước. C. BÀI TẬP TRẮC NGHIỆM. BÀI 2 . BIỂU THỨC TOẠ ĐỘ CỦA CÁC PHÉP TOÁN VECTƠ. A. LÝ THUYẾT. B. BÀI TẬP TỰ LUẬN. + Dạng 1. Trục tọa độ. + Dạng 2. Tọa độ véctơ. + Dạng 3. Tọa độ điểm. + Dạng 4. Ứng dụng. C. BÀI TẬP TRẮC NGHIỆM. BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. A. LÝ THUYẾT. B. BÀI TẬP TỰ LUẬN. + Dạng 1. Viết phương trình tổng quát của đường thẳng. + Dạng 2. Phương trình tham số của đường thẳng. + Dạng 3. Phương trình chính tắc của đường thẳng. C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Xác định véctơ chỉ phương, véc tơ pháp tuyến của đường thẳng, hệ số góc của đường thẳng. + Dạng 2. Viết phương trình đường thẳng (tổng quát, tham số, chính tắc). BÀI 4 . VỊ TRÍ TƯƠNG ĐỐI VÀ GÓC GIỮA HAI ĐƯỜNG THẲNG. KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MỘT ĐƯỜNG THẲNG. A. LÝ THUYẾT. B. BÀI TẬP TỰ LUẬN. + Dạng 1. Vị trí tương đối của hai đường thẳng. + Dạng 2. Khoảng cách từ một điểm đến một đường thẳng. + Dạng 3. Góc giữa hai đường thẳng. + Dạng 4. Tìm điểm thỏa mãn điều kiện cho trước. + Dạng 5. Các yếu tố về tam giác. + Dạng 6. Các yếu tố về tứ giác. + Dạng 7. Câu toán cực trị. C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Vị trí tương đối của hai đường thẳng. + Dạng 2. Góc của hai đường thẳng. + Dạng 3. Khoảng cách. + Dạng 4. Một số bài toán liên quan đến diện tích. + Dạng 5. Xác định điểm. + Dạng 6. Bài toán liên quan quan đến tam giác. + Dạng 7. Bài toán liên quan đến tứ giác. + Dạng 8. Cực trị. BÀI 5 . PHƯƠNG TRÌNH ĐƯỜNG TRÒN. A. LÝ THUYẾT. B. BÀI TẬP TỰ LUẬN. + Dạng 1. Nhận dạng phương trình đường tròn. + Dạng 2. Thiết lập phương trình đường tròn. + Dạng 3. Vị trí tương đối của đường thẳng và đường tròn. + Dạng 4. Tiếp tuyến của đường tròn. + Dạng 5. Tìm điểm thỏa mãn điều kiện cho trước. + Dạng 6. Tìm quỹ tích tâm đường tròn. C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Nhận dạng phương trình đường tròn. + Dạng 2. Tìm tọa độ tâm, bán kính đường tròn. + Dạng 3. Viết phương trình đường tròn. + Dạng 4. Tương giao (tiếp tuyến) của đường thẳng và đường tròn. + Dạng 5. Câu hỏi min – max. BÀI 6 . BA ĐƯỜNG CONIC. A. LÝ THUYẾT. B. BÀI TẬP TỰ LUẬN. + Dạng 1. Các bài toán liên quan elip. + Dạng 2. Các bài toán liên quan hypebol. + Dạng 3. Các bài toán liên quan parabol. + Dạng 4. Các bài toán liên quan đường cônic. C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Các bài toán liên quan elip. + Dạng 2. Các bài toán liên quan hypebol. + Dạng 3. Các bài toán liên quan parabol.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập tổ hợp - xác suất
Tài liệu gồm 38 trang, được biên soạn bởi quý thầy, cô giáo giảng dạy bộ môn Toán học tại trường THPT Marie Curie, quận 3, thành phố Hồ Chí Minh, phân dạng và tuyển chọn các bài toán trắc nghiệm + tự luận chuyên đề tổ hợp – xác suất, giúp học sinh lớp 11 tự học chương trình Đại số và Giải tích 11 chương 2. VẤN ĐỀ 1. HAI QUY TẮC ĐẾM CƠ BẢN. 1. QUY TẮC CỘNG. 2. QUY TẮC NHÂN. VẤN ĐỀ 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. 1. HOÁN VỊ. 2. CHỈNH HỢP. 3. TỔ HỢP. 4. PHÂN BIỆT TỔ HỢP VÀ CHỈNH HỢP. VẤN ĐỀ 3. GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH CÓ CHỨA nP / kAn / kCn. VẤN ĐỀ 4. NHỊ THỨC NEWTON. VẤN ĐỀ 5. PHÉP THỬ – BIẾN CỐ – XÁC SUẤT CỦA BIẾN CỐ. 1. PHÉP THỬ. 2. KHÔNG GIAN MẪU. 3. BIẾN CỐ. 4. XÁC SUẤT CỦA BIẾN CỐ. 5. BIẾN CỐ ĐỐI. 7. CÁCH TÍNH XÁC SUẤT CỦA MỘT BIẾN CỐ A.
Bài tập tổ hợp và xác suất - Diệp Tuân
Tài liệu gồm 214 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề tổ hợp và xác suất trong chương trình Đại số và Giải tích 11 chương 2. BÀI 1 . HAI QUY TẮC ĐẾM. Dạng toán 1. Bài toán chọn đồ vật. Dạng toán 2. Bài toán xếp ghế, xếp bàn tròn. Dạng toán 3. Chọn số và sắp xếp số. + Bài toán 1. Không có số 0 trong tập được chọn. + Bài toán 2. Có số 0 trong tập được chọn và số được chọn là số chẵn hoặc số chia hết cho 2 / 5. BÀI 2 . HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. Dạng toán 1. Giải phương trình – bất phương trình – hệ phương trình. Dạng toán 2. Bài toán sắp xếp vị trí. Dạng toán 3. Bài toán đếm và chọn số. + Loại 1. Đếm số. + Loại 2. Xếp đồ vật – phân công công việc. + Loại 3. Đếm tổ hợp liên quan đến hình học. BÀI 3 . THỨC NEW TƠN. Dạng toán 1. Xác định số hạng thứ k trong khai triển, số hạng đứng giữa trong khai triển. Dạng toán 2. Xác định hệ số của số hạng chứa x^m trong khai triển (ax^p + bx^q)^n với x > 0 (p và q là các hằng số khác nhau). Dạng toán 3. Tìm hệ số lớn nhất của khai triển. Dạng toán 4. Bài toán liên quan đến tổng $\sum\limits_{k = 0}^n {{a_k}} C_n^k{b^k}.$ BÀI 4 . XÁC SUẤT – CÁC QUY TẮC TÍNH XÁC SUẤT. Dạng toán 1. Xác định không gian mẫu và biến cố. Dạng toán 2. Tính xác suất theo định nghĩa cổ điển. + Nhóm bài toán 1. Chọn bài Tú Lơ Khơ, rút thẻ, gieo súc sắc. + Nhóm bài toán 2. Chọn bi. + Nhóm bài toán 3. Chọn câu trắc nghiệm. + Nhóm bài toán 4. Nhóm chọn số. + Nhóm bài toán 5. Liên quan đến hình học. + Nhóm bài toán 6. Xếp vị trí. BÀI 5 . CÁC QUY TẮC TÍNH XÁC SUẤT. Dạng toán 1. Các quy tắc cộng xác suất. Dạng toán 2. Tính xác suất bằng quy tắc nhân. Dạng toán 3. Phối hợp quy tắc cộng xác suất và quy tắc nhân.
Bài tập tổ hợp - xác suất vận dụng cao có lời giải chi tiết
Tài liệu gồm 101 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Toán học Bắc Trung Nam, tuyển chọn các bài tập tổ hợp – xác xuất vận dụng cao có lời giải chi tiết, tài liệu phù hợp với đối tượng học sinh khá – giỏi rèn luyện để nâng cao kiến thức tổ hợp và xác suất (Đại số và Giải tích 11 chương 2), học sinh ôn thi học sinh giỏi Toán THPT, học sinh ôn thi THPT Quốc gia môn Toán. Khái quát nội dung tài liệu bài tập tổ hợp – xác xuất vận dụng cao có lời giải chi tiết: PHẦN I . BÀI TẬP TRẮC NGHIỆM Dạng 1 . Các bài toán đếm – tính xác suất số các chữ số thỏa mãn điều kiện cho trước. + Loại 1. Liên quan đến tính chất chia hết. + Loại 2. Số lần xuất hiện của chữ số. + Loại 3. Liên quan đến vị trí. + Loại 4. Liên quan đến lớn hơn và nhỏ hơn. Dạng 2 . Các bài toán đếm số phương án tính xác suất liên quan đến người hoặc đồ vật. Dạng 3 . Các bài toán đếm số phương án tính xác suất liên quan đến đa giác. Dạng 4 . Các bài toán đếm – tính xác suất liên quan đến xếp chỗ và vị trí. [ads] PHẦN II . BÀI TẬP TỰ LUẬN Dạng 1 . Các bài toán đếm – tính xác suất số các chữ số thỏa mãn điều kiện cho trước. + Loại 1. Liên quan đến tính chất chia hết. + Loại 2. Số lần xuất hiện của chữ số. + Loại 3. Liên quan đến vị trí. + Loại 4. Liên quan đến lớn hơn và nhỏ hơn. Dạng 2 . Các bài toán đếm số phương án tính xác suất liên quan đến người hoặc đồ vật. Dạng 3 . Các bài toán đếm số phương án tính xác suất liên quan đến đa giác. Dạng 4 . Các bài toán đếm – tính xác suất liên quan đến xếp chỗ và vị trí.
Bài tập trắc nghiệm tổ hợp và xác suất nâng cao có lời giải chi tiết
giới thiệu đến bạn đọc tài liệu bài tập trắc nghiệm tổ hợp và xác suất nâng cao có lời giải chi tiết, đây là các bài toán hay được đóng góp bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC nhằm tạo nguồn đề tham khảo bổ ích để các em có thể rèn luyện nhiều hơn với các bài toán tổ hợp và xác suất ở mức độ khó và rất khó. Tài liệu phù hợp với các em học sinh khối 11 học nâng cao, các em học sinh lớp 12 ôn thi THPTQG môn Toán và các em học sinh ôn thi HSG Toán. Trích dẫn tài liệu bài tập trắc nghiệm tổ hợp và xác suất nâng cao có lời giải chi tiết : + Nhân ngày phụ nữ Việt Nam 20/10, các bạn nam lớp 10A đến cửa hàng hoa để mua hoa tặng các cô giáo dạy lớp mình. Cửa hàng hoa có bán ba loại hoa: hoa hồng, hoa cẩm chướng và hoa đồng tiền ( số hoa mỗi loại đều lớn hơn hoặc bằng 8). Nhóm 8 bạn nam vào cửa hàng và chọn 8 bông hoa. Hỏi các bạn nam có bao nhiêu cách chọn số lượng từng loại hoa? [ads] + Cho một lưới gồm các ô vuông kích thước 10 x 6 như hình vẽ sau đây. Một người đi từ A đến B theo quy tắc: chỉ đi trên cạnh của các ô vuông theo chiều từ trái qua phải hoặc từ dưới lên trên. Hỏi có bao nhiêu đường đi khác nhau để người đó đi từ A đến B đi qua điểm C? + Một chuồng có 3 con mèo trắng và 4 con mèo đen. Người ta bắt ngẫu nhiên lần lượt từng con ra khỏi chuồng cho đến khi nào bắt được 3 con mèo trắng mới thôi. Tính xác xuất để cần phải bắt ít nhất 5 con mèo.