Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG Toán Quốc gia 2020 - 2021 trường chuyên Bến Tre (lần 2)

Đề chọn đội tuyển thi HSG Toán Quốc gia 2020 – 2021 trường chuyên Bến Tre (lần 2) gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia 2020 – 2021 trường chuyên Bến Tre (lần 2) : + Trên mặt phẳng cho tập hợp A gồm 66 điểm phân biệt và tập hợp B gồm 16 đường thẳng phân biệt. Gọi m là số bộ (a;b) sao cho a thuộc A và b thuộc B. Chứng minh rằng m =< 159. + Cho hình đa giác đều 9 cạnh. Mỗi đỉnh của nó được tô bằng một trong hai màu trắng hoặc đen. Có tồn tại hay không hai tam giác phân biệt có diện tích bằng nhau, mà các đỉnh của mỗi tam giác được tô cùng một màu? Chứng minh khẳng định đó. + Cho hàm số f: R → R thỏa mãn f(xy + f(x)) = xf(y) + f(x) với mọi x, y thuộc R. a) Chứng minh rằng nếu có x thuộc R; y thuộc R sao cho f(x) = f(y) khác 0 thì x = y. b) Tìm tất cả các hàm số thỏa mãn đề bài.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Ninh Bình
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Ninh Bình Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 năm học 2016 – 2017 sở GD và ĐT Ninh Bình gồm 2 phần: + Phần trắc nghiệm: 40 câu + Phần tự luận: 4 câu
Đề thi tháng lần 2 lớp 12 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang
Nội dung Đề thi tháng lần 2 lớp 12 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tháng lần 2 môn Toán lớp 12 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề thi tháng lần 2 Toán lớp 12 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Trong không gian Oxyz cho tứ diện ABCD có A B C D. Trên các cạnh AB AC AD lần lượt lấy các điểm BCD sao cho 4 AB AC AD AB AC AD. Viết phương trình mặt phẳng BCD biết tứ diện A B C D có thể tích nhỏ nhất. + Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng? + Cho hàm số 4 2 fx 32 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m tổng giá trị các nghiệm phân biệt thuộc khoảng (−4;1) của phương trình 2 fx m 4 5 bằng -8? File WORD (dành cho quý thầy, cô):