Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 8 môn Toán vòng 2 năm 2022 2023 trường THCS Trần Mai Ninh Thanh Hóa

Nội dung Đề HSG lớp 8 môn Toán vòng 2 năm 2022 2023 trường THCS Trần Mai Ninh Thanh Hóa Bản PDF - Nội dung bài viết Đề HSG Toán lớp 8 vòng 2 năm 2022 – 2023 trường THCS Trần Mai Ninh – Thanh Hóa Đề HSG Toán lớp 8 vòng 2 năm 2022 – 2023 trường THCS Trần Mai Ninh – Thanh Hóa Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán lớp 8 vòng 2 năm học 2022 – 2023 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa. Đề thi bao gồm các câu hỏi thú vị, thách thức và hấp dẫn để các em thử sức và phát triển khả năng toán học của mình. Dưới đây là một số câu hỏi mẫu trong đề: Cho số thực x khác 0 thỏa mãn 2^x + x^2 = x^3 đều là số hữu tỉ. Chứng minh rằng x là số hữu tỉ. Cho S là tập hợp các số nguyên dương n có dạng 2^(x+y) + 3^y trong đó x, y là các số nguyên. Chứng minh rằng nếu A thuộc S và A là số chẵn thì A chia hết cho 4 và 4 chia hết cho A. Cho tam giác ABC vuông cân tại A. Gọi M, N lần lượt là trung điểm của AB và AC. Vẽ NH vuông góc với CM tại H, HE vuông góc với AB tại E. Trên tia NH lấy điểm K sao cho NK = CM. (a) Chứng minh tứ giác ABKC là hình vuông. (b) Chứng minh HM là tia phân giác của góc BHE. (c) Giả sử góc AHC = 135 độ. Chứng minh 2HA^2 = HB^2 + HC^2. Đề thi cung cấp đáp án, lời giải chi tiết và hướng dẫn chấm điểm, giúp các em ôn tập và kiểm tra kiến thức một cách hiệu quả. File WORD của đề thi đang được cung cấp cho quý thầy, cô giáo để sử dụng trong quá trình giảng dạy và ôn tập cho học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Gia Viễn, tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 30 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho tam giác ABC cân tại A (góc A nhọn), đường cao AH cắt tia phân giác BD tại điểm I. Gọi M là hình chiếu của điểm H trên cạnh AC, K là trung điểm của HM. a) Chứng minh AH HM HC CM. b) Chứng minh AK vuông góc với BM. c) Biết AI = 5cm, HI = 4cm. Tính độ dài cạnh BC. + Xét hình chữ nhật kích thước 3cm x 4 cm. Chứng minh rằng với 7 điểm bất kì nằm trong hình chữ nhật, luôn có thể chọn ra hai điểm có khoảng cách nhỏ hơn 3. Cho hai số thực x, y thỏa mãn x > −1; y > 1 và x + y = 1. Tìm giá trị nhỏ nhất của biểu thức 2 2 1 1 P1 1. + Cho 3 số nguyên dương 123 aaa có tổng bằng 2023 2022. Chứng minh rằng: 333 123 aaa chia hết cho 3.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS An Trung - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán 8 năm học 2022 – 2023 trường THCS An Trung, tỉnh Nghệ An; đề thi có đáp án và thang chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS An Trung – Nghệ An : + Cho hình vuông ABCD trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ. a) Chứng minh MNPQ hình vuông. b) Tìm vị trí của M, N, P, Q để diện tích tứ giác MNPQ đạt giá trị nhỏ nhất. + Cho tam giác ABC (AB < AC), M là trung điểm của BC. Một đường thẳng qua M và song song với phân giác của góc BAC cắt AC, AB lần lượt tại E, F. Chứng minh CE = BF. + Tìm x, y thuộc Z thỏa mãn 2 x xy x y 3 1. Tìm x, y là các số tự nhiên lớn hơn 1 sao cho 4 1 x y và 4 1 y x. Xác định đa thức f(x) biết f(x) chia hết cho 2x – 1, chia cho x – 2 thì dư 6, chia cho 2 2 5 2 x x được thương là x + 2 và còn dư.
Đề HSG cụm trường lần 1 Toán 8 năm 2022 - 2023 phòng GDĐT Yên Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi cụm trường lần 1 môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cụm trường lần 1 Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Thành – Nghệ An : + Cho hình vuông ABCD, có độ dài mỗi cạnh bằng a. M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME AB MF AD. a) Chứng minh DE = CF. b) Chứng minh ba đường thẳng DE, BF, CM đồng quy. c) Xác định vị trí của điểm M để diện tích tứ giác AEMF đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó. + Cho 17 điểm nằm trong mặt phẳng, trong đó không có 3 điểm nào thẳng hàng. Nối các điểm này lại bằng các đoạn thẳng và tô màu xanh, đỏ hoặc vàng. Chứng minh rằng tồn tại một tam giác có các cạnh cùng màu. + Cho biểu thức 3 2 3 2 3 2 x x. Tìm điều kiện xác định và Rút gọn biểu thức Q. Tìm số hữu tỉ x để biểu thức 2 2 4 2 x x P x có giá trị là một số nguyên dương.
Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Kỳ Anh - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Khi chia đa thức f(x) cho các đa thức x − 2 và x − 3 thì được dư lần lượt là 5 và 7. Nếu chia đa thức f(x) cho 2 x x 5 6 thì được thương là 2 x 1. Tìm đa thức f(x)? Cho dãy số viết theo quy luật như sau: 5; 7; 11; 19; …. Viết biểu thức biểu diễn số hạng thứ n của dãy số trên? + Xã A tổ chức giải giao hữu bóng đá theo hình thức thi đấu vòng tròn một lượt. Mỗi trận đấu, đội thắng được tính 3 điểm, đội hòa được tính 1 điểm và đội thua không có điểm nào. Kết thúc giải, Ban tổ chức nhận thấy số trận thắng gấp ba số trận hòa và tổng số điểm của các đội là 330 điểm. Hỏi có tất cả bao nhiêu đội tham gia? + Mảnh vườn có dạng hình thang biết độ dài hai đáy lần lượt là 5m, 15m và độ dài hai đường chéo lần lượt là 16m và 12m. Tính diện tích mảnh vườn trên? Cho tam giác ABC có trung tuyến AM. Đường thẳng bất kỳ đi qua trọng tâm G cắt các cạnh AB và AC thứ tự tại E và F. Tính giá trị của biểu thức AB AC AE AF.