Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT KonTum

Nội dung Đề chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT KonTum Bản PDF Nhằm tuyển chọn các em học sinh có năng lực môn Toán của tỉnh KonTum để tham dự kỳ thi HSG Toán Quốc gia năm học 2018 – 2019, sở Giáo dục và Đào tạo KonTum tiến hành tổ chức kỳ thi học sinh giỏi cấp tỉnh, đề được biên soạn theo hình thức tự luận với 7 câu hỏi và bài tập, thang điểm thi 20 điểm, kỳ thi được tổ chức ngày 18 tháng 08 năm 2018, đề thi có lời giải chi tiết. Nội dung đề chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT KonTum : + Câu 1: Hệ phương trình. (3 điểm) + Câu 2: Chứng minh hệ thức lượng giác trong tam giác. (3 điểm) + Câu 3: Dãy số truy hồi với các yêu cầu chứng minh hoặc tìm số hạng tổng quát hoặc tính giới hạn. (2 điểm) + Câu 4: Tổ hợp. (3 điểm) + Câu 5: Hình học phẳng: Chứng minh tính chất hình học. Vận dụng các kiến thức chuyên. (5 điểm) + Câu 6: Số học. (2 điểm) + Câu 7: Bất đẳng thức. (2 điểm)

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển tỉnh môn Toán năm 2021 2022 trường chuyên Lê Quý Đôn Khánh Hòa
Nội dung Đề chọn đội tuyển tỉnh môn Toán năm 2021 2022 trường chuyên Lê Quý Đôn Khánh Hòa Bản PDF Đề chọn đội tuyển tỉnh môn Toán năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 05 tháng 10 năm 2021.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD ĐT Lâm Đồng
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD ĐT Lâm Đồng Bản PDF Thứ Tư ngày 22 tháng 09 năm 2021, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh vào đội tuyển bồi dưỡng thi học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Lâm Đồng gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 2022 sở GD ĐT Đồng Tháp
Nội dung Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 2022 sở GD ĐT Đồng Tháp Bản PDF Sáng Chủ Nhật ngày 20 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức kỳ thi chọn đội tuyển học sinh giỏi Toán dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 – 2022 sở GD&ĐT Đồng Tháp gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 – 2022 sở GD&ĐT Đồng Tháp : + Cho các số thực x, y, z thỏa mãn: x + y + z = -1 và x3 + y3 + z3 = 11. a) Biểu diễn xz theo y. b) Chứng minh rằng trong ba số x, y, z có ít nhất một số thuộc nửa khoảng [-2;-1). + Cho dãy số (an) xác định như sau. Chứng minh rằng với mỗi số tự nhiên n: a) 2an – 1 là số chính phương. b) an viết được dưới dạng tổng bình phương của hai số tự nhiên. + Có 2021 viên bi, đựng trong 100 cái hộp. Mỗi lần, cho phép lấy 2 viên bi, 2 viên bi đó thuộc vào tối đa 2 hộp và bỏ chúng vào 1 hộp khác. Chứng minh rằng sau một số bước có thể bỏ tất cả các viên bi vào cùng 1 hộp.
Đề học sinh giỏi tỉnh Toán THPT GDTX năm 2020 2021 sở GD ĐT Đắk Lắk
Nội dung Đề học sinh giỏi tỉnh Toán THPT GDTX năm 2020 2021 sở GD ĐT Đắk Lắk Bản PDF Đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2020 – 2021 sở GD&ĐT Đắk Lắk gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 17 tháng 03 năm 2021. Trích dẫn đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2020 – 2021 sở GD&ĐT Đắk Lắk : + Cho hàm số y = f(x) = x^4 + mx^2 + 4 có đồ thị (C) với m là tham số. 1) Khi m = -5, viết phương trình các tiếp tuyến của đồ thị (C) tại giao điểm của nó với trục hoành. 2) Tìm tất cả các giá trị thực của m để đồ thị (C) có 3 điểm cực trị nằm trên các trục toạ độ. + Tìm tất cả các giá trị thực của tham số m để phương trình 4^x – m.2^(x + 1) + 2m = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện x1 + x2 = 4. + Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(1;2;1), B(-2;1;3), C(2;-1;3), D(0;3;1). Viết phương trình mặt phẳng (P) đi qua hai điểm A, B và cách đều hai điểm C, D sao cho C và D nằm khác phía so với mặt phẳng (P).