Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp trường Toán 11 vòng 2 năm 2022 - 2023 trường THPT Bình Sơn - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 vòng 2 năm học 2022 – 2023 trường THPT Bình Sơn, tỉnh Vĩnh Phúc; đề thi hình thức 110% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án. Trích dẫn Đề HSG cấp trường Toán 11 vòng 2 năm 2022 – 2023 trường THPT Bình Sơn – Vĩnh Phúc : + Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp, tính xác suất để 2 viên bi được lấy vừa khác màu vừa khác số. Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A. + Trong mặt phẳng với trục toạ độ Oxy cho hình thang cân ABCD AB CD. Gọi H I lần lượt là hình chiếu vuông góc của B trên các đường thẳng AC CD. Giả sử M N lần lượt là trung điểm của AD HI. Phương trình đường thẳng AB có dạng mx ny 7 0 biết M N 1 2 3 4 và đỉnh B nằm trên đường thẳng x y 9 0 2 cos 5 ABM. Khi đó m n có giá trị thuộc khoảng nào sau đây? + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. A. 29,5triệu đồng. B. 30 triệu đồng. C. 30,5 triệu đồng. D. 29 triệu đồng.

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán 11 năm 2023 - 2024 cụm trường THPT Gia Lâm Long Biên - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp cụm môn Toán 11 năm học 2023 – 2024 cụm trường THPT Gia Lâm & Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 11 năm 2023 – 2024 cụm trường THPT Gia Lâm & Long Biên – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Đường thẳng SA vuông góc với mặt phẳng ABCD SA a 2. 1) Tính góc giữa hai đường thẳng AD và SC. 2) Mặt phẳng đi qua A và vuông góc với SC cắt các cạnh SB SC SD lần lượt tại các điểm E F I. Chứng minh đường thẳng IE song song với đường thẳng BD. 3) Gọi H là giao điểm của hai đường thẳng AF và IE. Tính tỉ số AH AF.4) Gọi M là một điểm thay đổi trên cạnh CD M (khác C và D). Mặt phẳng qua M và vuông góc với CD cắt các cạnh SC SB lần lượt tại N và P. Tìm giá trị lớn nhất của diện tích tam giác MNP. + Cho phương trình sin cos 2 cos. 1) Giải phương trình đã cho. 2) Tính tổng các nghiệm của phương trình trong khoảng 0 20.
Đề Olimpic Toán 11 năm 2023 - 2024 cụm Thạch Thất Quốc Oai - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olimpic cấp cụm môn Toán 11 năm học 2023 – 2024 cụm Thạch Thất & Quốc Oai, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olimpic Toán 11 năm 2023 – 2024 cụm Thạch Thất & Quốc Oai – Hà Nội : + Cho hình chóp S.ABC có đáy là tam giác đều cạnh a SA SB SC đường cao SO của hình chóp S.ABC có độ dài bằng 2a. a) Chứng minh rằng SA BC. b) M là điểm thuộc đường cao AH của tam giác ABC (M khác A và H). Mặt phẳng P đi qua M và vuông góc với AH cắt hình chóp theo thiết diện. Tìm vị trí của M để diện tích thiết diện lớn nhất. + Cho các số 5 2 x y theo thứ tự lập thành cấp số cộng, các số theo thứ tự lập thành cấp số nhân. Tìm x y. + Gieo một con xúc sắc 4 lần. Tính xác suất để mặt 6 chấm xuất hiện ít nhất 1 lần.
Đề học sinh giỏi tỉnh Toán 11 chuyên đợt 2 năm 2023 - 2024 sở GDĐT Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh THPT môn Toán 11 chuyên đợt 2 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi tỉnh Toán 11 chuyên đợt 2 năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho dãy số thực (un) xác định bởi 1 u với mọi n. Chứng minh dãy (un) có giới hạn hữu hạn và tính giới hạn đó. + Cho tam giác ABC nhọn (AB AC) và điểm D nằm trên đường trung tuyến AM kẻ từ đỉnh A của tam giác (D khác A). Gọi E là điểm trên đoạn MC (E khác M, C). Gọi H, K lần lượt là hình chiếu của D lên AB và AC. Gọi (C1) và (C2) lần lượt là hai đường tròn ngoại tiếp tam giác BHE và CKE, (C1) cắt (C2) tại điểm thứ hai là L. Gọi d là đường thẳng kẻ từ B vuông góc với BC, d cắt (C1) tại điểm thứ hai là I, N là giao điểm thứ hai của IL và (C2). a) Chứng minh BI song song NC. b) Gọi P là giao điểm của IL và BC. Chứng minh tứ giác ALMP nội tiếp đường tròn. + Cho đoạn thẳng AB được chia thành bốn phần bằng nhau bởi ba điểm M, N, P (hình vẽ). Ta đánh dấu 2024 điểm phân biệt trong đoạn AB bằng cách chia đều trong mỗi đoạn AM, MN, NP, PB có 506 điểm, thỏa mãn điều kiện với một điểm bất kỳ thuộc đoạn AM thì tồn tại một điểm thuộc đoạn MN đối xứng với nhau qua M; tương tự với một điểm bất kỳ thuộc đoạn PB thì tồn tại một điểm thuộc đoạn NP đối xứng với nhau qua P. Sau đó ta thực hiện tô màu đỏ cho 1012 điểm tùy ý và 1012 điểm còn lại màu đen. Chứng minh tổng các khoảng cách từ A đến các điểm màu đỏ bằng tổng các khoảng cách từ B đến các điểm màu đen.
Đề học sinh giỏi Toán 11 cấp tỉnh năm 2023 - 2024 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hà Nam : + Ba hộp chứa các viên bi giống nhau về kích thước. Hộp (I) chứa a viên bi màu đỏ và 2 viên bi màu xanh. Hộp (II) chứa b viên bi màu đỏ và 3 viên bi màu xanh. Hộp (III) chứa 6 viên bi màu đỏ và 4 viên bi màu xanh. Từ mỗi hộp lấy ra một viên bi. Biết xác suất lấy ra ít nhất một viên bi màu đỏ là 0,976 và xác suất lấy ra cả ba viên bi màu đỏ là 0,336. Tìm a, b và tính xác suất lấy được đúng hai viên bi màu đỏ. + Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB CD), cạnh AB a 3 AD CD a. Tam giác SAB cân tại S SA a 2. Trên đoạn AD lấy điểm M. Mặt phẳng (α) đi qua điểm M và song song với hai đường thẳng SA AB. Mặt phẳng (α) cắt các cạnh BC SC SD theo thứ tự tại N PQ. Chứng minh tứ giác MNPQ là hình thang cân và tìm vị trí điểm M để MNPQ ngoại tiếp được đường tròn. + Gia đình bác An muốn làm mái tôn cho sân thượng là hình chữ nhật ABB A với kích thước chiều dài AA m 8 và chiều rộng AB m 5. Bác dự định làm mái tôn (kín) có thanh ngang CC m 6 nằm chính giữa mái, song song và cách mặt sàn sân thượng 1,4m (tham khảo hình vẽ). Biết rằng chi phí làm mái tôn trọn gói cho 2 1m là 250000 vnđ. Tính số tiền bác An phải chi trả (làm tròn đến hàng nghìn).