Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 9 môn Toán đầu năm 2023 2024 phòng GD ĐT Kim Sơn Ninh Bình

Nội dung Đề kiểm tra lớp 9 môn Toán đầu năm 2023 2024 phòng GD ĐT Kim Sơn Ninh Bình Bản PDF - Nội dung bài viết Đề kiểm tra Toán lớp 9 đầu năm 2023 - 2024 phòng GD&ĐT Kim Sơn - Ninh Bình Đề kiểm tra Toán lớp 9 đầu năm 2023 - 2024 phòng GD&ĐT Kim Sơn - Ninh Bình Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề kiểm tra đánh giá chất lượng môn Toán lớp 9 đầu năm học 2023-2024 do phòng Giáo dục và Đào tạo huyện Kim Sơn, tỉnh Ninh Bình đã chuẩn bị. Đề thi bao gồm 12 câu trắc nghiệm (tổng cộng 03 điểm) và 03 câu tự luận (tổng cộng 07 điểm), thời gian làm bài là 60 phút. Để giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới, đề thi sẽ đi kèm đáp án và hướng dẫn chấm điểm chi tiết. Trích dẫn một số câu hỏi trong đề thi như sau: - Giải bài toán bằng cách lập phương trình: Một người đi xe máy từ A đến B với vận tốc 40 km/h. Lúc về, người đó đi với vận tốc 30 km/h, nên thời gian về nhiều hơn thời gian đi là 45 phút. Yêu cầu tính quãng đường AB. - Cho hình chữ nhật ABCD có AB = 4cm, AD = 3cm. Hãy vẽ đường cao AH của tam giác ADB và thực hiện các yêu cầu: + Tính diện tích hình chữ nhật ABCD, tính độ dài đường chéo BD + Chứng minh rằng tam giác AHB đồng dạng với tam giác BCD + Chứng minh rằng AD^2 = DH.DB và tính độ dài đoạn DH. - Giả sử hằng ngày bạn Tiến dành x giờ để tập chạy với vận tốc trung bình là 10km/h. Biểu thức nào sau đây biểu thị quãng đường Tiến chạy được trong x giờ? Chúc các em học sinh đạt kết quả tốt trong bài kiểm tra và tiếp tục phấn đấu học tập. Hãy ôn tập và giữ vững kiến thức để vượt qua mọi thử thách trước mắt. Cảm ơn các thầy cô đã hỗ trợ và động viên các em trong quá trình học tập!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT Nông Cống - Thanh Hóa
Thứ Sáu ngày 25 tháng 09 năm 2020, phòng Giáo dục và Đào tạo Nông Cống, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Nông Cống – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Nông Cống – Thanh Hóa : + Chứng minh rằng tích của bốn số tự nhiên liên tiếp cộng với 1 là một số chính phương. + Tìm nghiệm nguyên của phương trình: 2xy^2 + x + y + 1 = x^2 + 2y^2 + xy. + Cho ba số tự nhiên a, b, c. Chứng minh rằng: Nếu a + b + c chia hết cho 6 thì (a + b)(b + c)(c + a) – 2abc chia hết cho 6.
Đề thi HSG Toán 9 cấp tỉnh năm học 2019 - 2020 sở GDĐT Quảng Nam
Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi chọn học sinh giỏi môn Toán khối lớp 9 năm học 2019 – 2020. Đề thi HSG Toán 9 cấp tỉnh năm học 2019 – 2020 sở GD&ĐT Quảng Nam gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 9 cấp tỉnh năm học 2019 – 2020 sở GD&ĐT Quảng Nam : + Cho nửa đường tròn tâm O, đường kính AB = 2a, H là điểm nằm trên đoạn thẳng OA sao cho HA = 2HO. Đường thẳng vuông góc với AB tại H cắt nửa đường tròn đã cho tại C. Hạ HP vuông góc với AC tại P, HQ vuông góc với BC tại Q. a) Chứng minh OC vuông góc với PQ. b) Gọi I là giao điểm của OC và PQ. Tính độ dài đoạn thẳng CI theo a. c) Lấy điểm M trên tia đối của tia BA (M khác B), đường thẳng MC cắt nửa đường tròn đã cho tại điểm thứ hai là D. Hai đường tròn ngoại tiếp hai tam giác OAC và OBD cắt nhau tại điểm thứ hai là K, gọi E là giao điểm của AD và BC. Chứng minh bốn điểm A, B, E, K cùng nằm trên một đường tròn và KO vuông góc với KE. [ads] + Cho tam giác ABC vuông tại A có AC = 2AB, H là chân đường cao vẽ từ A của tam giác ABC, D là trung điểm của HC. a) Chứng minh tam giác ADH vuông cân. b) Gọi F là trung điểm AC, dựng hình vuông ABEF. Chứng minh tứ giác ABED nội tiếp trong đường tròn và tính diện tích tam giác ADE khi AB = 2 cm. + Cho phương trình x^2 – 3(m + 1)x + 2m^2 + 7m – 4 = 0 với m là tham số. Tìm m để phương trình đã cho có hai nghiệm phân biệt sao cho bình phương của một nghiệm bằng ba lần nghiệm còn lại.
Đề thi chọn học sinh giỏi Toán 9 năm học 2019 - 2020 sở GDĐT Bắc Giang
Thứ Bảy ngày 30 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán 9 năm học 2019 – 2020 sở GD&ĐT Bắc Giang gồm 05 bài toán dạng tự luận, đề thi gồm 01 trang, học sinh có 150 phút để làm bài. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm học 2019 – 2020 sở GD&ĐT Bắc Giang : + Tìm tất cả các cặp số nguyên (x;y) thỏa mãn x^2 + 2x^2y + 1 = y^2. + Tìm số nguyên dương nhỏ nhất có bốn chữ số tận cùng là 2020 và chia hết cho 2019. [ads] + Cho ba điểm A, B, C thẳng hàng; B nằm giữa A và C. Trên cùng nửa mặt phẳng bờ là đường thẳng AC vẽ hai nửa đường tròn đường kính AB, AC. Trên nửa đường tròn đường kính AB lấy điểm M (M không trùng với A, B). Qua M kẻ đường thẳng vuông góc với AB cắt AB tại H và cắt nửa đường tròn đường kính AC tại N. Gọi P là giao điểm của BM và CN. Đường thẳng qua B vuông góc với AB cắt nửa đường tròn đường kính AC tại K; Q là giao điểm của KN và BP. a. Chứng minh rằng: APB = ACP; AP^2 = AB.AC. b. Chứng minh rằng AQ là phân giác của góc PAK. c. Cho AC = 7(cm); AB = 4(cm). Tính độ dài đoạn PK khi PK là tiếp tuyến của đường tròn đường kính AC.
Đề thi học sinh giỏi Toán THCS năm 2019 - 2020 sở GDĐT Quảng Trị
Thứ Ba ngày 26 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa môn Toán bậc Trung học Cơ sở năm học 2019 – 2020. Đề thi học sinh giỏi Toán THCS năm học 2019 – 2020 sở GD&ĐT Quảng Trị gồm có 01 trang với 05 bài toán, học sinh có 150 phút để làm bài thi. Trích dẫn đề thi học sinh giỏi Toán THCS năm 2019 – 2020 sở GD&ĐT Quảng Trị : + Cho tam giác ABC (AB > AC) nội tiếp đường tròn (O). Đường phân giác ngoài của tam giác ABC tại A cắt đường tròn (O) tại điểm thứ hai là D(D khác A); M, N lần lượt là trung điểm các cạnh BC, AC; E là hình chiếu của D trên AB, G là giao điểm của MN và AD. a) Chứng minh tứ giác BDEM nội tiếp đường tròn. b) Chứng minh EG song song với BC. [ads] + Cho tam giác ABC cân tại A có BAC = 100°. Lấy điểm D trong tam giác ABC sao cho ABD = 10° và BAD = 20°. Tính số đo ADC. + Cho số nguyên dương n và d (d > 0) là ước của 2n2. Chứng minh n2 + d không phải là số chính phương.