Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Vũng Tàu BR VT

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Vũng Tàu BR VT Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT Chúng ta hãy cùng khám phá đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu. Trong đề thi này, có những câu hỏi thú vị như: 1. Xét các số thực dương a, b thay đổi thỏa mãn a + b = ab. Hãy tìm giá trị nhỏ nhất của biểu thức P = 7/4.a + 5/4.b + 4/a + 2/b. 2. Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của đường tròn (O). Chứng minh ba điểm H, M, K thẳng hàng và tứ giác AMDE nội tiếp. 3. Chứng minh AB/AC = SB/SC trong tam giác ABC. 4. Tia SM cắt (O) tại T. Chứng minh tứ giác ABCT là hình thang cân. 5. Cho 2024 phân số gồm từ 1/2024 đến 2024/2024. Thực hiện thao tác xoá hai số a, b trong dãy và thay vào số a + b – 4ab cho đến khi chỉ còn duy nhất một số, hãy tìm số đó. Hy vọng rằng đề thi này sẽ giúp các em học sinh lớp 9 rèn luyện kỹ năng và chuẩn bị tốt cho các kì thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 sở GD&ĐT Ninh Bình; đề thi gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2021, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Cho đường tròn tâm O bán kính R. Dây cung BC cố định, không đi qua tâm O. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I, H lần lượt là trung điểm của BC và MN, BC cắt MN tại K. 1. Chứng minh bốn điểm O, M, N, I cùng thuộc một đường tròn và HK là tia phân giác của BHC. 2. Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở E. Chứng minh M, N, E thẳng hàng. 3. Đường thẳng ∆ qua điểm M và vuông góc với đường thẳng ON, cắt đường tròn (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để tứ giác AMPN là hình bình hành. + Tìm các số nguyên x, y thoả mãn: 2 y x 5x 7 3. + Cho một bảng ô vuông m x n (gồm m dòng và n cột). Cho quy tắc tô màu bảng ô vuông như sau: Mỗi ô vuông đơn vị được tô bằng màu đỏ hoặc màu xanh sao cho bất kì bảng ô vuông 2 x 3 hoặc 3 x 2 nào cũng có đúng hai ô được tô màu đỏ. a) Hãy chỉ ra một cách tô màu theo quy tắc trên cho bảng ô vuông 4 x 6 (Điền chữ Đ vào ô được tô màu đỏ, chữ X vào ô được tô màu xanh). b) Người ta đã tô bảng ô vuông 2021 x 2022 theo quy tắc trên. Hỏi bảng ô vuông này có bao nhiêu ô được tô màu đỏ?
Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 - 2021 sở GDĐT Bình Dương
Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Dương gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Dương : + Cho 40 số nguyên dương thay đổi sao cho có tổng bằng 58. Tìm giá trị lớn nhất và giá trị nhỏ nhất của tổng các bình phương của chúng. + Giả sử ba số thực a, b, c thỏa mãn điều kiện a > 0, bc = 3a, a + b + c = abc. Chứng minh rằng: a21 + 213. + Cho tam giác ABC cân tại A, có đường tròn nội tiếp (I). Các điểm E, F theo thứ tự thuộc các cạnh CA, AB (E khác C và A; F khác B và A) sao cho EF tiếp xúc với đường tròn (I) tại điểm P. Gọi K L lần lượt là hình chiếu vuông góc của E, F trên BC. Giả sử FK cắt EL tại điểm J. Gọi H là hình chiếu vuông góc của J trên BC. a) Chứng minh rằng HJ là phân giác của góc EHF. b) Ký hiệu S1, S2 lần lượt là diện tích của tứ giác BFJL và CEJK. Chứng minh rằng: BP2 V 5 CE. c) Gọi D là trung điểm cạnh BC. Chứng minh rằng ba điểm P, J, D thẳng hàng.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Thái Nguyên
Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thái Nguyên gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Thái Nguyên.