Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu; kỳ thi được diễn ra vào chiều thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GDKHCN Bạc Liêu : + Tìm tất cả các giá trị của tham số m để phương trình x2 – 5x + m – 2 = 0 có hai nghiệm dương phân biệt thoả mãn hệ thức. + Cho đường tròn tâm O có đường kính MN = 2R. Vẽ đường kính AB của đường tròn (O) (A khác M và A khác N). Tiếp tuyến của đường tròn (O) tại N cắt các đường thẳng MA, MB lần lượt tại các điểm I, K. a) Chứng minh tứ giác ABKI nội tiếp. b) Khi đường kính AB quay quanh tâm O thoả mãn điều kiện đề bài, xác định vị trí của đường kính AB để tứ giác ABKI có diện tích nhỏ nhất. + Cho nửa đường tròn (O) đường kính AB, điểm C thuộc nửa đường tròn (C khác A và B). Gọi I là điểm chính giữa cung AC, E là giao điểm của AI và BC. Gọi K là giao điểm của AC và BI. a) Chứng minh rằng EK vuông góc AB. b) Gọi F là điểm đối xứng với K qua I. Chứng minh AF là tiếp tuyến của (O). c) Nếu sin BAC = 6/3. Gọi H là giao điểm của EK và AB. Chứng minh KH(KH + 2HE) = 2HE.KE.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, có đáp án và lời giải chi tiết.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – Thừa Thiên Huế gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB [ads] a) Chứng minh tứ giác MAIB nội tiếp b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thừa Thiên Huế
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai vòi nước cùng chảy vào một bể không có nước thì sau 5 giờ đầy bể. Nếu lúc đầu chỉ mở vòi thứ nhất chảy trong 2 giờ rồi đóng lại, sau đó mở vòi thứ hai chảy trong 1 giờ thì ta được 1/4 bể nước. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu? + Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn (O) và D là hình chiếu vuông góc của B trên AO sao cho D nằm giữa A và O. Gọi M là trung điểm BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với đường tròn (O), H là giao điểm của BF và AD. Chứng minh rằng: [ads] a) Tứ giác BDOM nội tiếp và góc MOD + góc NAE = 180 độ b) DF song song với CE, từ đó suy ra NE.NF = NC.ND c) CA là tia phân giác của góc BCE. d) HN vuông góc với AB + Một cốc nước có dạng hình trụ có bán kính đáy bằng 3 cm, chiều cao bằng 12cm và chứa một lượng nước cao 10 cm. Người ta thả từ từ 3 viên bi làm bằng thủy tinh có cùng đường kính bằng 2 cm vào cốc nước. Hỏi mực nước trong cốc lúc này cao bao nhiêu?
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đà Nẵng
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đà Nẵng gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Một đội xe cần vận chuyển 160 tấn gạo với khối lượng mỗi xe chở bằng nhau. Khi sắp khởi hành thì được bổ sung thêm 4 xe nữa nên mỗi xe chở ít hơn dự định lúc đầu 2 tấn gạo (khối lượng mỗi xe chở vẫn bằng nhau). Hỏi đội xe ban đầu có bao nhiêu chiếc? + Cho nửa đường tròn tâm O đường kính AB và C là một điểm trên nửa đường tròn (C khác A, B). Trên cung AC lấy D (D khác A và C). Gọi H là hình chiếu vuông góc của C lên AB và E là giao điểm của BD và CH [ads] a) Chứng minh ADEH là tứ giác nội tiếp b) Chứng minh rằng góc ACO = góc HCB và AB.AC = AC.AH + CB.CH c) Trên đoạn OC lấy điểm M sao cho OM = CH. Chứng minh rằng khi C thay đổi trên nữa đường tròn đã cho thì M chạy trên một đường tròn cố định