Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề vị trí tương đối của hai đường tròn

Nội dung Tài liệu lớp 9 môn Toán chủ đề vị trí tương đối của hai đường tròn Bản PDF Tài liệu lớp 9 môn Toán với chủ đề về vị trí tương đối của hai đường tròn là tài liệu quan trọng giúp học sinh hiểu rõ về các khái niệm và tính chất liên quan đến hai đường tròn.

Trước hết, tài liệu cung cấp một tóm tắt lý thuyết về các tính chất của đường nối tâm giữa hai đường tròn, từ đó giúp học sinh hiểu được quan hệ giữa vị trí của hai đường tròn và đoạn nối tâm d cùng bán kính R. Ngoài ra, tài liệu cũng giải thích về tiếp tuyến chung của hai đường tròn trong các trường hợp khác nhau, từ đó giúp học sinh dễ dàng nhận biết và áp dụng vào bài toán thực tế.

Để học sinh nắm vững kiến thức, tài liệu cung cấp các bài tập và dạng toán phổ biến liên quan đến vị trí tương đối của hai đường tròn, từ hai đường tròn tiếp xúc nhau, cắt nhau đến không giao nhau. Bằng cách giải các dạng toán này, học sinh có thể rèn luyện kỹ năng giải quyết vấn đề và áp dụng kiến thức vào thực hành.

Cuối cùng, tài liệu còn cung cấp bài tập trắc nghiệm và bài tập về nhà để học sinh ôn tập và kiểm tra kiến thức. File Word cung cấp sẽ giúp giáo viên dễ dàng sử dụng và chỉnh sửa theo nhu cầu của lớp học.

Tóm lại, tài liệu lớp 9 môn Toán với chủ đề về vị trí tương đối của hai đường tròn là công cụ hữu ích giúp học sinh hiểu rõ và áp dụng kiến thức vào thực tế, từ đó nâng cao kỹ năng toán học của mình.

Nguồn: sytu.vn

Đọc Sách

Một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình - hệ phương trình
Tài liệu gồm 05 trang, được biên soạn bởi thầy giáo Vũ Hồng Phong (giáo viên Toán trường THPT Tiên Du 1, huyện Tiên Du, tỉnh Bắc Ninh), hướng dẫn một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình – hệ phương trình. 1. KIẾN THỨC CẦN NHỚ. Một điều quan trọng giúp chúng ta giải được một phương trình (PT) hay hệ phương trình bằng cách đặt ẩn phụ đó là phát hiện được các mối liên hệ giữa các ẩn với nhau. Mối liên hệ này gồm có: + Mối liên hệ giữa các ẩn mới. + Mối liên hệ giữa các ẩn cũ. + Mối liên hệ giữa các ẩn mới với các ẩn cũ. Mối liên hệ giữa các ẩn được thể hiện dưới dạng các đẳng thức hoặc bất đẳng thức. 2. VÍ DỤ MINH HỌA. 3. BÀI TẬP ĐỀ NGHỊ.
Chuyên đề toán thực tế môn Toán 9 - Nguyễn Ngọc Dũng
Tài liệu gồm 52 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, phân dạng và tuyển chọn các bài toán thực tế môn Toán 9. MỤC LỤC : Bài số 1. Định lý Vi-ét và ứng dụng 1. Bài số 2. Kỹ năng làm toán thực tế “Hàm số và đồ thị” 2. Bài số 3. Giải toán bằng cách lập phương trình, hệ phương trình 15. Bài số 4. Các bài toán thực tế liên quan “Hình không gian” 24. Bài số 5. Các bài toán thực tế liên quan “Hình học phẳng” 38.
31 chủ đề học tập Đại số 9
Tài liệu gồm 246 trang, tuyển tập 31 chủ đề học tập Đại số 9. Chương 1 – Chủ đề 1. Căn bậc hai. Chương 1 – Chủ đề 2. Căn thức bậc hai và hằng đẳng thức. Chương 1 – Chủ đề 3. Liên hệ phép nhân, phép chia. Chương 1 – Chủ đề 4. Biến đổi đơn giản biểu thức chứa căn bậc hai. Chương 1 – Chủ đề 5. Rút gọn biểu thức chứa căn bậc hai. Chương 1 – Chủ đề 6. Căn bặc ba. Chương 1 – Chủ đề 7. Ôn tập chương 1. Chương 1 – Chủ đề 8 + 9. Kiểm tra khảo sát và chữa đề. Chương 2 – Chủ đề 1. Nhắc lại và bổ sung về hàm số bậc nhất. Chương 2 – Chủ đề 2. Hàm số bậc nhất. Chương 2 – Chủ đề 3. Đồ thị hàm số bậc nhất. Chương 2 – Chủ đề 4. Vị trí tương đối giữa hai đường thẳng. Chương 2 – Chủ đề 5. Hệ số góc của đường thẳng. Chương 2 – Chủ đề 6. Tổng ôn tập chương 2. Chương 2 – Chủ đề 7. Kiểm tra khảo sát và chữa bài. Chương 3 – Chủ đề 1. Phương trình bậc nhất hai ẩn. Chương 3 – Chủ đề 2. Hệ phương trình bậc nhất hai ẩn. Chương 3 – Chủ đề 3. Giải hệ phương trình bằng phương pháp thế. Chương 3 – Chủ đề 4. Giải hệ phương trình bằng phương pháp cộng đại số. Chương 3 – Chủ đề 5. Hệ phương trình bậc nhất hai ẩn. Chương 3 – Chủ đề 6. Giải bài toán bằng cách lập hệ phương trình. Chương 3 – Chủ đề 7. Tổng ôn tập chương 3. Chương 3 – Chủ đề 8. Kiểm tra khảo sát chất lượng ôn tập chương 3. Chương 4 – Chủ đề 1. Hàm số y = ax2 (a ≠ 0) và đồ thị. Chương 4 – Chủ đề 2. Công thức nghiệm. Chương 4 – Chủ đề 3. Hệ thức vi. Ét và ứng dụng. Chương 4 – Chủ đề 4. Phương trình quy về phương trình bậc hai. Chương 4 – Chủ đề 5. Giải bài toán bằng cách lập phương trình. Chương 4 – Chủ đề 6. Bài toán vể đường thang và parabol. Chương 4 – Chủ đề 7. Tổng ôn tập chương 4. Chương 4 – Chủ đề 8. Kiểm tra khảo sát chất lượng ôn tập.