Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thiệu Hóa Thanh Hóa

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thiệu Hóa Thanh Hóa Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 phòng GD&ĐT Thiệu Hóa Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 phòng GD&ĐT Thiệu Hóa Thanh Hóa Sytu xin tự giới thiệu đến các thầy cô và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 21 tháng 02 năm 2023. Trích dẫn đề thi học sinh giỏi Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Thiệu Hóa – Thanh Hóa: + Bài toán 1: Cho x, y, z là các số thực dương thỏa mãn: x2 + y2 + z2 + 1/x2 + 1/y2 + 1/z2 = 6. Hãy tính giá trị của biểu thức P = x2021 + y2022 + z2023. + Bài toán 2: Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Bài toán 3: Cho tứ giác ABCD có các góc B = D = 90° và AB > AD, lấy điểm M trên cạnh AB sao cho AM = AD. Đường thẳng DM cắt BC tại N. Gọi H là hình chiếu của D trên AC, K là hình chiếu của C trên AN. Chứng minh rằng: AM2 = AH.AC. AHM = AMC và tam giác CDN là tam giác cân. MHN = MCK. Đây là những bài toán thú vị và đầy thách thức đối với các em học sinh lớp 8. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng và kiến thức Toán một cách hiệu quả. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra HSG Toán 8 năm 2023 - 2024 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đội tuyển học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Ninh Giang, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Ninh Giang – Hải Dương : + Cho tam giác ABC nhọn AB < AC. Các đường cao AD, BE, CF cắt nhau tại H D BC E AC F. a) Chứng minh AF.AB = AE.AC. b) Qua D kẻ đường thẳng song song với EF cắt AB tại M, cắt CF tại N. Chứng minh FEH DEH và DM = DN. + Cho tam giác ABC nhọn (AB < AC). Các đường cao BM, CN cắt nhau tại I M AC N AB. Gọi E là trung điểm BC, IE cắt MN tại F. Chứng minh FM IM FN IN. + Tìm số nguyên dương n sao cho 2 An 4 14 7 là số chính phương.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Nghĩa Lộ - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND Thị Xã Nghĩa Lộ, tỉnh Yên Bái. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Nghĩa Lộ – Yên Bái : + Cho hình bình hành ABCD trong đó có A > 90° và AB > BC. Qua C dựng đường thẳng vuông góc với BC rồi lấy các điểm M và N sao cho CM = CN = CB. Qua C dựng đường vuông góc với CD rồi lấy các điểm P và Q sao cho CP = CQ = CD (M và P ở trong cùng nửa mặt phẳng với D có bờ BC). Chứng minh: a) MPNQ là hình bình hành. b) AC vuông góc MP. + Tìm số nguyên n sao cho n3 – 2 chia hết cho n – 2. + Cho n là số nguyên tố. Hỏi n10 – 1 là số nguyên tố hay hợp số? Vì sao?
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho hàm số y = mx + 4m + 3 (m là tham số) có đồ thị là đường thẳng (d). Tìm điểm cố định mà đường thẳng (d) đi qua với mọi giá trị của m. + Cho tam giác nhọn ABC, các đường cao BE, CF. Gọi M là trung điểm của cạnh BC. a) Chứng minh MEF cân và AEF = ABC. b) Trên đoạn BE lấy điểm Q sao cho BFQ = CFE. Chứng minh BFQ đồng dạng với CFE và EF.BC + BF.CE = BE.CF. + Cho tam giác nhọn ABC. Gọi N là điểm bất kì trên đoạn thẳng BC (N khác B và C). Gọi các điểm H, K lần lượt là hình chiếu vuông góc của N trên cạnh AB, AC. Xác định vị trí của điểm N để đoạn thẳng HK có độ dài nhỏ nhất.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 THCS cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Thanh Hóa : + Giả sử đa thức f x chia cho x 1 dư 4; chia cho 2 x 1 dư 2 3 x. Hãy tìm dư trong phép chia f x cho 2. + Cho O là trung điểm của đoạn thẳng AB. Vẽ tia Ax By cùng phía đối với AB và vuông góc AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a) Chứng minh OAC đồng dạng với DBO và 2 AB AC BD. b) Kẻ OM vuông góc CD tại M. Tia BM cắt tia Ax tại I. Chứng minh AC CM CI 2) Cho ABC (AB AC) trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB AC lần lượt ở D và E. Chứng minh rằng 3 AB AC AD AE. + Một hộp đựng 20 quả bóng trong đó có 4 quả màu xanh, 5 quả màu trắng và 6 quả màu vàng (các quả còn lại khác màu nhau). Lấy ngẫu nhiên từ hộp ra 2 quả, tính xác suất để lấy được 2 quả cùng màu?