Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp kiến thức môn Toán lớp 9 phần Đại số

Tài liệu gồm 32 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán Tiểu Học – THCS – THPT Việt Nam, tổng hợp kiến thức môn Toán lớp 9 phần Đại số, giúp học sinh lớp 9 tra cứu nhanh khi học chương trình Đại số 9 và ôn thi vào lớp 10 môn Toán. 1 CĂN BẬC HAI – CĂN BẬC BA. 1. Căn bậc hai – Căn bậc ba. 2. Điều kiện để biểu thức xác định (có nghĩa). 3. Liên hệ phép khai phương – phép nhân – phép chia. 4. Đưa thừa số vào trong – ra ngoài căn. 5. Trục căn thức ở mẫu. 6. Giải phương trình. 7. Các dạng toán hay gặp. 8. So sánh căn bậc hai. 9. Tính giá trị của biểu thức. 10. So sánh biểu thức có chứa biến. 11. Tìm giá trị của x thỏa mãn đẳng thức (sau rút gọn). 12. Tìm giá trị của x thỏa mãn bất phương trình (sau rút gọn). 13. Tìm x nguyên, tìm x thuộc N, tìm số nguyên lớn nhất, số nguyên nhỏ nhất để giá trị của biểu thức A nguyên. 14. Tìm giá trị của x, tìm x thuộc Q; x thuộc R để giá trị biểu thức A nguyên. 15. Tìm giá trị của tham số m để A(x) = m có nghiệm. 16. Tìm giá trị của tham số m để P > f(m) hoặc P < f(m) có nghiệm, vô nghiệm. 17. Tìm giá trị lớn nhất – giá trị nhỏ nhất của biểu thức sau rút gọn. 2 HÀM SỐ BẬC NHẤT – BẬC HAI. 1. Tìm điều kiện để hàm số là hàm số bậc nhất. 2. Hàm số đồng biến – nghịch biến. 3. Hệ số góc của đường thẳng. 4. Vẽ đồ thị hàm số bậc nhất. 5. Tính diện tích các hình – độ dài các đoạn thẳng trên hệ trục. 6. Tìm giao tuyến của hai đồ thị y = f(x) và y = g(x). 7. Vẽ đồ thị hàm số y = |f(x)|. 8. Biện luận số nghiệm của phương trình f(x) = f(m) dựa vào đồ thị. 9. Vị trí tương đối giữa hai đường thẳng. 10. Hai đường thẳng cắt nhau thỏa mãn điều kiện k. 11. Lập phương trình đường thẳng. 12. Tìm điểm cố định của y = f(x;m); chứng minh đồ thị luôn đi qua điểm cố định (hoặc tìm điểm mà đồ thị luôn đi qua). 13. Ba điểm thẳng hàng – không thẳng hàng (Ba điểm là ba đỉnh tam giác). 14. Tìm điều kiện tham số để ba đường thẳng đồng quy. 15. Khoảng cách từ gốc tọa độ đến đường thẳng. 3 ĐỒ THỊ HÀM SỐ 1. Tính chất. 2. Điểm thuộc đồ thị. 3. Vị trí tương đối của đường thẳng y = f(x) = mx + n và Parabol y = g(x) = ax2. 4 GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HOẶC HỆ PHƯƠNG TRÌNH. 1. Phương pháp chung. 2. Dạng toán cấu tạo số. 3. Dạng toán làm chung – làm riêng – vòi nước. 4. Dạng toán chuyển động. 5. Dạng toán có nội dung hình học. 6. Dạng toán năng suất – phần trăm. 7. Dạng toán có nội dung lí hóa. 5 HỆ PHƯƠNG TRÌNH. 1. Kiểm tra (x0;y0) có phải là nghiệm của phương trình ax + by = 0 không? 2. Tìm nghiệm tổng quát của phương trình ax + by = 0. 3. Tìm nghiệm nguyên, nguyên dương, nguyên âm của ax + by = 0. 4. Dự đoán số nghiệm của hệ phương trình. 5. Giải hệ phương trình bằng phương pháp thế. 6. Giải hệ phương trình bằng phương pháp cộng. 7. Giải hệ phương trình bằng phương pháp đặt ẩn phụ. 8. Hệ phương trình chứa dấu giá trị tuyệt đối. 9.Tìm hệ số a; b biết hệ a1x + b1y = c1 và a2x + b2y = c2 có nghiệm là x0;y0. 10. Hệ phương trình tương đương. 11. Giải và biện luận hệ phương trình. 12. Tìm m để hệ có nghiệm duy nhất thỏa mãn điều kiện K. 13. Tìm hệ thức độc lập giữa x, y không phụ thuộc vào m (tìm quỹ tích điểm M(x;y) hoặc chứng minh M(x;y) nằm trên đường thẳng cố định). 6 HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I. 7 HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II. 8 HỆ ĐẲNG CẤP BẬC HAI. 9 PHƯƠNG TRÌNH BẬC HAI ax2 + bx + c = 0. 1. Giải phương trình ax2 + bx + c = 0. 2. Tìm hai số biết tổng và tích. 3. Định lý Vi-Ét. 4. Mối liên hệ giữa hai nghiệm x1; x2. 5. Giải và biện luận ax2 + bx + c = 0. 6. Chứng minh phương trình luôn có nghiệm – vô nghiệm. 7. Phương trình có hai nghiệm phân biệt – Phương trình có nghiệm kép. 8. Lập phương trình bậc hai khi biết nghiệm. 9. Tìm m để phương trình có nghiệm x0. 10. Phương trình có hai nghiệm dương phân biệt (nằm bên phải Oy). 11. Phương trình có hai nghiệm âm phân biệt (nằm bên trái trục tung). 12. Phương trình có hai nghiệm trái dấu + cùng dấu (nằm về hai phía hoặc cùng phía với Oy). 13. Tìm m để phương trình có ít nhất một nghiệm dương. 14. Phương trình có một nghiệm dương. 15. Tìm m để phương trình có ít nhất một nghiệm âm. 16. Phương trình có một nghiệm âm. 17. Tìm m để phương trình có một nghiệm. 18. Phương trình có hai nghiệm đối nhau. 19. Phương trình có hai nghiệm là nghịch đảo nhau. 20. Chứng minh có ít nhất một phương trình có nghiệm. 21. Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện. 22. Hệ thức giữa x1; x2 không phụ thuộc m. 23. Tìm giá trị lớn nhất – nhỏ nhất của biểu thức chứa x1; x2. 24. Phương trình có hai nghiệm phân biệt nguyên. 25. Tìm m để phương trình a1x2 + b1x + c1 = 0 và a2x2 + b2x + c2 = 0 có nghiệm chung. 26. So sánh một số với nghiệm của phương trình ax2 + bx + c = 0. 10 PHƯƠNG TRÌNH BẬC BA y = ax3 + bx2 + cx + d = 0. 1. Phương trình có 3 nghiệm phân biệt. 2. Phương trình có hai nghiệm phân biệt. 3. Phương trình có một nghiệm. 11 PHƯƠNG TRÌNH BẬC BỐN y = ax4 + bx2 + c. 1. Cách giải ax4 + bx2 + c = 0. 2. Phương trình có 4 nghiệm. 3. Phương trình có 3 nghiệm. 4. Phương trình có hai nghiệm. 5. Phương trình có 1 nghiệm. 6. Phương trình vô nghiệm. 7. Phương trình (x + a)(x + b)(x + c)(x + d) = m với a + b = c + d. 8. Phương trình hồi quy ax4 + bx3 + cx2 + dx + e = 0 và ad2 = eb2. 9. Phương trình dạng (x + a)4 + (x + b)4 = c. 10. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = rx2 với ab = cd. 11. Phương trình ax4 + bx3 + cx2 + bx + a = 0.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn
Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc có đỉnh bên trong đường tròn. Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh ở bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn. Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập. Dạng 1 : Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2 : Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Từ đó suy ra điều cần chứng minh.
Tài liệu Toán 9 chủ đề góc nội tiếp
Tài liệu gồm 09 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc nội tiếp trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: Góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn gọi là góc nội tiếp. Lưu ý: Cung nằm bên trong góc nội tiếp được gọi là cung bị chắn. 2. Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. 3. Hệ quả: Trong một đường tròn: a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau và ngược lại. b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau. c) Góc nội tiếp (nhỏ hơn hoặc bằng 90 độ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. d) Góc nội tiếp chắn nửa đường tròn là góc vuông. B. Bài tập. Dạng 1 : Chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau. Cách giải: Dùng hệ quả trong phần lý thuyết. Dạng 2 : Chứng minh hai đường thẳng vuông góc, ba điểm thẳng hàng.
Tài liệu Toán 9 chủ đề góc ở tâm và số đo cung
Tài liệu gồm 09 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc ở tâm và số đo cung trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc ở tâm. 2. Số đo cung. 3. So sánh hai cung. 4. Khi nào thì sđ AC + sđ BC = sđ AB. B. Bài tập. Dạng 1 : Tính số đo của góc ở tâm, của cung bị chắn. Cách giải: – Đưa về cách tính số đo một góc của tam giác, tam giác. – Để tính số đo của cung nhỏ, ta tính số đo của góc ở tâm tương ứng. – Để tính số đo của cung lớn ta lấy 3600 trừ đi số đo của cung nhỏ. – Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. – Sử dụng quan hệ giữa đường kính và dây. Dạng 2 : Chứng minh hai cung bằng nhau. Cách giải: Để chứng minh hai cung (của một đường tròn) bằng nhau ta chứng minh hai cung này có cùng một số đo.
Tài liệu Toán 9 chủ đề góc tạo bởi tia tiếp tuyến và dây cung
Tài liệu gồm 11 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc tạo bởi tia tiếp tuyến và dây cung trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: + Góc BAx có đỉnh nằm trên đường tròn cạnh Ax là một tia tiếp tuyến còn cạnh AB chứa dây cung AB, góc BAx gọi là góc tạo bởi tiếp tuyến và dây cung. + AnB gọi là cung bị chắn. 2. Định lý: Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn. 3. Hệ quả: Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. 4. Định lý bổ sung (Bổ đề): Nếu góc BAx (với đỉnh A nằm trên đường tròn, một cạnh chứa dây cung AB) có số đo bằng nửa số đo của cung AB căng dây đó và cung này nằm bên trong gó đó thì cạnh Ax là một tia tiếp tuyến của đường tròn. B. Bài tập. Dạng 1 : Chứng minh đẳng thức, các góc bằng nhau. Cách giải: Ta áp dụng các kiến thức sau: – Góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. – Hai góc kề đáy của tam giác cân thì bằng nhau. – Hai tam giác có hai cặp góc bằng nhau thì cặp góc còn lại cũng bằng nhau. Dạng 2 : Chứng minh hai đường thẳng song song, hai đường thẳng vuông góc, một tia là tiếp tuyến của đường tròn. Cách giải: Sử dụng hệ quả về góc tạo bởi tia tiếp tuyến và dây cung hoặc hệ quả của hia góc nội tiếp.