Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

105 bài toán PT - HPT - BPT trong đề thi vào 10 môn Toán năm học 2021 - 2022

Tài liệu gồm 17 trang, được tổng hợp bởi thầy giáo Đặng Quang Thịnh, tuyển tập 105 bài toán về phương trình – hệ phương trình – bất phương trình (PT – HPT – BPT) trong đề thi vào 10 môn Toán năm học 2021 – 2022, giúp học sinh lớp 9 ôn tập để chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán sắp tới. Trích dẫn tài liệu 105 bài toán PT – HPT – BPT trong đề thi vào 10 môn Toán năm học 2021 – 2022 : + Cho phương trình: x2 − (m − 2)x + m + 1 (1) a) Giải phương trình (1) với m = −3 b) Chứng tỏ phương trình (1) luôn có nghiệm với mọi số thực m c) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài đường cao ứng với cạnh huyền là h = 2√5. + Theo các chuyên gia về sức khoẻ, người trưởng thành cần đi bộ từ 5000 bước mỗi ngày sẽ rất tốt cho sức khoẻ. Để rèn luyện sức khoẻ, anh Sơn và chị Hà đề ra mục tiêu mỗi ngày một người cần phải đi bộ ít nhất 6000 bước. Hai người đi bộ ở công viên và thấy rằng, nếu cùng nhau đi trong 2 phút thì anh Sơn bước nhiều hơn chị Hà 20 bước. Hai người cùng giữ nguyên tốc độ như vậy nhưng chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước. Hỏi mỗi ngày anh Sơn và chị Hà cùng đi bộ trong 1 giờ thì họ dã đạt được số bước tối thiểu mà mục tiêu đề ra chưa? (Giả sử tốc độ đi bộ hằng ngày của hai người không đổi). + Hằng ngày bạn Mai đi học bằng xe đạp, quãng đường từ nhà đến trường dài 3km. Hôm nay, xe đạp hư nên Mai nhờ mẹ chở đi đến trường bằng xe máy với vận tốc lớn hơn vận tốc khi đi xe đạp là 24km/h, cùng một thời điểm khởi hành như mọi ngày nhưng Mai đã đến trường sớm hơn 10 phút. Tính vận tốc của Mai khi đi đến trường bằng xe đạp.

Nguồn: toanmath.com

Đọc Sách

16 chuyên đề ôn thi vào môn Toán
Nội dung 16 chuyên đề ôn thi vào môn Toán Bản PDF - Nội dung bài viết Sách Ôn Thi Toán Lớp 10 - 16 Chuyên Đề Sách Ôn Thi Toán Lớp 10 - 16 Chuyên Đề Sytu xin giới thiệu đến quý thầy cô và các em học sinh cuốn sách "16 chuyên đề ôn thi vào lớp 10 môn Toán", với 192 trang bao gồm 9 chuyên đề Đại số và 7 chuyên đề Hình học. Sách được biên soạn bởi các tác giả: Bùi Văn Tuyên và Nguyễn Đức Trường. Phần Đại số bao gồm: Chuyên đề 1: Rút gọn và tính giá trị của biểu thức Chuyên đề 2: Giải phương trình và hệ phương trình bậc nhất hai ẩn Chuyên đề 3: Phương trình bậc hai một ẩn Chuyên đề 4: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình Chuyên đề 5: Hàm số và đồ thị Chuyên đề 6: Chứng minh bất đẳng thức Chuyên đề 7: Giải bất phương trình Chuyên đề 8: Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức Chuyên đề 9: Giải toán có nội dung số học Phần Hình học bao gồm: Chuyên đề 10: Chứng minh các hệ thức hình học Chuyên đề 11: Chứng minh tứ giác nội tiếp và nhiều điểm cùng nằm trên đường tròn Chuyên đề 12: Chứng minh quan hệ tiếp xúc giữa đường thẳng và đường tròn hoặc hai đường tròn Chuyên đề 13: Chứng minh điểm cố định Chuyên đề 14: Các bài tập có nội dung tính toán Chuyên đề 15: Quỹ tích và dựng hình Đây sẽ là nguồn tư liệu hữu ích giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán. Hy vọng sách sẽ giúp đỡ các em hiểu rõ hơn về các chuyên đề và nâng cao kiến thức Toán của mình.
Tài liệu chuyên Toán THCS
Nội dung Tài liệu chuyên Toán THCS Bản PDF - Nội dung bài viết Tài liệu chuyên Toán THCS Tài liệu chuyên Toán THCS Tài liệu chuyên Toán THCS bao gồm 70 trang với nhiều chuyên đề bồi dưỡng Toán phù hợp cho học sinh khối chuyên và học sinh giỏi các lớp 6, 7, 8, 9. Đây là các chuyên đề thường xuất hiện trong các đề thi HSG, giúp học sinh rèn luyện và nâng cao kiến thức Toán một cách thực tế và hiệu quả.
Chuyên đề toán thực tế dành cho học sinh THCS Nghiêm Xuân Huy
Nội dung Chuyên đề toán thực tế dành cho học sinh THCS Nghiêm Xuân Huy Bản PDF - Nội dung bài viết Chuyên đề toán thực tế dành cho học sinh THCS Nghiêm Xuân Huy Chuyên đề toán thực tế dành cho học sinh THCS Nghiêm Xuân Huy Tài liệu Chuyên đề toán thực tế dành cho học sinh THCS Nghiêm Xuân Huy bao gồm 100 trang được tuyển chọn và giải chi tiết 184 bài toán thực tế phù hợp cho học sinh THCS từ lớp 6 đến lớp 9. Tài liệu được biên soạn bởi tác giả Nghiêm Xuân Huy đem lại cho học sinh những kiến thức toán học thực tế và ứng dụng vào cuộc sống. Trích dẫn từ tài liệu: 1. Vấn đề vận tải: Hai chiếc xe ô tô cùng khởi hành từ TP HCM đi Vũng Tàu, một chiếc từ Vũng Tàu về TP HCM. Một chiếc đến nơi trễ hơn chiếc kia 1 giờ. Một chiếc chạy nhanh gấp 1,5 lần chiếc kia. Hỏi chiếc chạy nhanh cần bao lâu để đến nơi? 2. Nguyên lý đòn bẩy: Nguyên lý đòn bẩy là một khái niệm quan trọng trong vật lý và cơ học. Đòn bẩy được sử dụng để biến đổi lực tác dụng lên các vật theo hướng có lợi cho con người. Archimedes đã nói: "Hãy cho tôi một điểm tựa, tôi sẽ nâng bổng trái đất lên." Quy tắc của đòn bẩy: F1.r1 = F2.r2. Hãy giải quyết bài toán: Tìm X? 3. Lập quy hoạch chi phí: Giám đốc dự án xây dựng chung cư đang phân vân giữa việc mua 4 xe tải để chở vật liệu xây dựng hoặc thuê 4 xe. Hỏi sau bao nhiêu ngày thì chi phí của việc mua xe bằng việc thuê xe? Mỗi phương án đều được phân tích chi tiết về chi phí nhân công, xăng dầu để đưa ra quyết định hiệu quả nhất. Chủ đề này không chỉ giúp học sinh học toán mà còn học hỏi được những kiến thức và kỹ năng áp dụng vào cuộc sống hàng ngày.
Phương pháp giải đề tuyển sinh vào môn Toán
Nội dung Phương pháp giải đề tuyển sinh vào môn Toán Bản PDF - Nội dung bài viết Phương pháp giải đề tuyển sinh vào môn Toán Phương pháp giải đề tuyển sinh vào môn Toán Để giúp các em học sinh chuẩn bị thi vào lớp 10 các trường công lập, trường chuyên, chúng tôi đã biên soạn cuốn sách Phương pháp giải đề tuyển sinh 9. Cuốn sách này được tổng hợp từ các đề thi của các trường trong cả nước, được biên soạn rất tâm huyết từ nhóm giáo viên uy tín. Với mong muốn giúp các em tự tin hơn trong kỳ thi tuyển sinh, cuốn sách này sẽ cung cấp cho các em một cách ôn luyện hiệu quả. Tài liệu này bao gồm nhiều đề thi từ các tỉnh thành khác nhau như Bắc Giang, Bình Dương, Bình Định, Bắc Ninh, Quảng Ngãi, Cà Mau, Đồng Nai, Hưng Yên, Hải Dương, Hà Tĩnh, Thừa Thiên Huế, Kiên Giang, Khánh Hòa, Nghệ An... Mỗi đề thi đều được tổ chức theo cấu trúc chính thức của kỳ thi tuyển sinh. Việc học qua các đề thi này sẽ giúp các em nắm vững các dạng bài toán và hiểu rõ mức độ ra đề của từng trường, từ đó có phương pháp ôn thi hiệu quả hơn. Hy vọng rằng cuốn sách Phương pháp giải đề tuyển sinh 9 sẽ là người bạn đồng hành đắc lực cho các em học sinh trong quá trình ôn luyện và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!