Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Vĩnh Lộc Thanh Hóa

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Vĩnh Lộc Thanh Hóa Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2014-2015 phòng GD ĐT Vĩnh Lộc Thanh Hóa Đề giao lưu HSG lớp 8 môn Toán năm 2014-2015 phòng GD ĐT Vĩnh Lộc Thanh Hóa Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm 2014-2015 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa. Đề thi này bao gồm các câu hỏi kèm đáp án và lời giải chi tiết như sau: + Đề bài 1: Cho tam giác nhọn ABC (AB < AC) có đường cao AH sao cho AH = HC. Trên AH lấy một điểm I sao cho HI = BH. Gọi P và Q là trung điểm của BI và AC. Gọi N và M lần lượt là hình chiếu của H trên AB và IC; K là giao điểm của đường thẳng CI với AB; D là giao điểm của đường thẳng BI với AC. Cần chứng minh các phần sau: a) Chứng minh I là trực tâm của tam giác ABC. b) Tứ giác HNKM là hình vuông. c) Chứng minh bốn điểm N, P, M, Q thẳng hàng. + Đề bài 2: Cho x là số nguyên. Cần chứng minh rằng biểu thức M = (x + 1)(x + 2)(x + 3)(x + 4) + 1 là bình phương của một số nguyên. + Đề bài 3: Cho x, y, z là các số nguyên thỏa mãn: x + y + z chia hết cho 6. Cần chứng minh M = (x + y)(x + z)(y + z) - 2xyz chia hết cho 6. Hy vọng rằng đề thi này sẽ giúp các em học sinh lớp 8 ôn tập và nắm vững kiến thức Toán. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC nhọn (AB < AC), đường cao AD, CF cắt nhau tại H. Gọi M là điểm thuộc đoạn thẳng DC sao cho BM < 2BD. Qua A vẽ đường thẳng vuông góc với AM cắt CH tại K. a. Chứng minh rằng: KAH AMB. b. Lấy G đối xứng với H qua K. Gọi P là trung điểm của BM. Chứng minh: AG AP. c. Khi BM = 2MC, gọi N là giao điểm của AG và BH. Chứng minh: AG = 2AN. + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC lấy điểm M sao cho BM 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn là số có 4 chữ số thỏa mãn chữ số đứng sau lớn hơn chữ số đứng trước.