Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi kiến thức lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Quận 1 TP HCM

Nội dung Đề thi kiến thức lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Quận 1 TP HCM Bản PDF - Nội dung bài viết Đề thi kiến thức lớp 8 môn Toán năm 2016 - 2017 phòng GD ĐT Quận 1 TP HCM Đề thi kiến thức lớp 8 môn Toán năm 2016 - 2017 phòng GD ĐT Quận 1 TP HCM Ngày 23 tháng 03 năm 2017, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh đã tổ chức kỳ thi kiến thức ngày hội học sinh cấp Trung học Cơ sở môn Toán lớp 8 năm học 2016 - 2017. Đề thi kiến thức Toán môn Toán lớp 8 năm 2016 - 2017 của phòng GD&ĐT Quận 1 - TP HCM đã được công bố với đáp án và lời giải chi tiết. Trong đề thi, có một số câu hỏi thú vị như sau: + Đề bài 1: Khối lớp 8 của một trường THCS có bốn lớp 81, 82, 83 và 84. Trung bình cộng số học sinh của bốn lớp là 39,5. Nếu chuyển 4 em từ lớp 81 sang lớp 82 thì số học sinh của hai lớp bằng nhau. Số học sinh lớp 83 bằng trung bình cộng số học sinh hai lớp 81 và 82. Số học sinh lớp 84 bằng trung bình cộng số học sinh hai lớp 82 và 83. Hãy tìm số học sinh ban đầu của mỗi lớp. + Đề bài 2: Cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. a) Chứng minh rằng: tam giác HED đồng dạng với tam giác HBC. b) Gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. Đường thẳng qua N vuông góc với MH cắt AB, AC lần lượt tại I, K. Chứng minh rằng: N là trung điểm của IK. + Đề bài 3: Cho tam giác đều ABC, điểm M nằm trong tam giác ABC. Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, MF vuông góc với AB tại F. Đặt MD = x, ME = y, MF = z. a) Chứng minh rằng x + y + z không phụ thuộc vào vị trí của điểm M. b) Xác định vị trí của điểm M sao cho tổng bình phương x2 + y2 + z2 đạt giá trị nhỏ nhất. Đề thi này không chỉ giúp học sinh rèn luyện và kiểm tra kiến thức mà còn khuyến khích họ tìm hiểu sâu và áp dụng lý thuyết vào thực hành. Chắc chắn rằng đề thi sẽ đem lại nhiều trải nghiệm bổ ích cho các em học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh lớp 8 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 8 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi cấp tỉnh lớp 8 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh Đề thi học sinh giỏi cấp tỉnh lớp 8 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh Đề thi học sinh giỏi cấp tỉnh Toán lớp 8 năm học 2020 - 2021 của sở GD&ĐT Bắc Ninh là bài thi có 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút và kỳ thi đã được tổ chức vào ngày 18 tháng 03 năm 2021. Đề thi này đánh giá năng lực Toán học của học sinh lớp 8 thông qua việc giải các bài toán đa dạng và phong phú. Học sinh sẽ phải hiểu rõ lý thuyết và áp dụng kiến thức vào việc giải quyết các vấn đề thực tế. Đề thi học sinh giỏi Toán lớp 8 cấp tỉnh Bắc Ninh mang đến cơ hội cho học sinh thể hiện khả năng, kiến thức và kỹ năng trong môn Toán, từ đó khẳng định được khả năng và tiềm năng của bản thân. Hãy cùng đón chờ kết quả của kỳ thi để biết được những học sinh giỏi sẽ là những người có cơ hội tham gia các vòng thi cao hơn, nâng cao danh tiếng và phát triển bản thân trong lĩnh vực Toán học.
Đề thi HSG lớp 8 môn Toán cấp trường năm 2020 2021 trường THCS Đông Kinh Lạng Sơn
Nội dung Đề thi HSG lớp 8 môn Toán cấp trường năm 2020 2021 trường THCS Đông Kinh Lạng Sơn Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 cấp trường năm 2020 - 2021 trường THCS Đông Kinh - Lạng Sơn Đề thi HSG Toán lớp 8 cấp trường năm 2020 - 2021 trường THCS Đông Kinh - Lạng Sơn Đề thi HSG Toán lớp 8 cấp trường năm 2020 - 2021 trường THCS Đông Kinh - Lạng Sơn bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài là 120 phút, kỳ thi diễn ra vào ngày ... tháng 11 năm 2020. Đề thi cung cấp đáp án và lời giải chi tiết để học sinh tham khảo. Trích dẫn một số câu hỏi từ đề thi: Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S. Hãy chứng minh tam giác AQR và tam giác APS là các tam giác cân. Tìm giá trị nhỏ nhất của biểu thức: A = 13*2 + y^2 + 4xy - 2y - 16x + 2015. Cho hai số a, b thỏa mãn điều kiện a + b = 1. Chứng minh a^3 + b^3 + ab >= 1/2. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức toán học một cách logic và chính xác để giải quyết các bài toán phức tạp. Qua đó, giúp học sinh rèn luyện kỹ năng tư duy logic, khả năng giải quyết vấn đề và cải thiện kết quả học tập trong môn Toán.
Đề thi chọn HSG cấp huyện lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Lục Ngạn Bắc Giang
Nội dung Đề thi chọn HSG cấp huyện lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Lục Ngạn Bắc Giang Bản PDF - Nội dung bài viết Đề thi chọn HSG cấp huyện lớp 8 môn Toán năm 2019 2020 Đề thi chọn HSG cấp huyện lớp 8 môn Toán năm 2019 2020 Ngày 07 tháng 06 năm 2020, phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang đã tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2019 – 2020. Đề thi chọn HSG cấp huyện Toán lớp 8 năm 2019 – 2020 do phòng GD&ĐT Lục Ngạn – Bắc Giang biên soạn, bao gồm 01 trang với 05 bài toán, được thi sinh hoàn thành trong thời gian 120 phút. Đây là cơ hội cho các học sinh thể hiện tài năng và kiến thức của mình trong môn Toán.
Đề thi HSG lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Lập Thạch Vĩnh Phúc
Nội dung Đề thi HSG lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Lập Thạch Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2019 - 2020 phòng GD ĐT Lập Thạch Vĩnh Phúc Đề thi HSG lớp 8 môn Toán năm 2019 - 2020 phòng GD ĐT Lập Thạch Vĩnh Phúc Xin chào quý thầy cô và các em học sinh lớp 8! Đây là đề thi HSG Toán lớp 8 năm 2019 - 2020 của phòng GD&ĐT Lập Thạch - Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm, nhằm giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Trích dẫn đề thi: 1. Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H thuộc BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB. b) Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM. c) Tia AM cắt BC tại G. Chứng minh. 2. Cho biểu thức A. a) Tìm x để giá trị của A được xác định. Rút gọn biểu thức A. b) Tìm giá trị nguyên của x để A nhận giá trị nguyên. 3. Phân tích các đa thức sau thành nhân tử. Đề thi này sẽ giúp các em ôn tập kiến thức Toán một cách hiệu quả, nắm vững các khái niệm và kỹ năng cần thiết để đạt kết quả cao trong kỳ thi HSG sắp tới. Chúc các em học tốt!