Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Nghi Lộc – Nghệ An : + Trong đợt dịch Covid-19 vừa qua để ủng hộ cho đội tình nguyện ra quân vì môi trường xanh-sạch- đẹp, mẹ có nhờ Ngọc ra cửa hàng tạp hóa để mua 4 chai nước sát khuẩn và 3 hộp khẩu trang hết 449 nghìn đồng. Tính giá tiền của mỗi chai nước sát khuẩn và giá tiền mỗi hộp khẩu trang mà Ngọc đã mua. Biết giá tiền của 1 chai nước sát khuẩn hơn giá tiền 1 hộp khẩu trang là 16 nghìn đồng. + Cho điểm M nằm ngoài đường trong (O; R) sao cho OM = 3R. Qua M vẽ hai tiếp tuyến MA, MB với đường tròn (O; R) (A, B là các tiếp điểm) và kẻ cát tuyến MCD của đường tròn (O; R) cắt đoạn thẳng OA (C nằm giữa M và D). Gọi I là trung điểm của dây cung CD và H là giao điểm của AB với OM. a) Chứng minh: Tứ giác AIOB là tứ giác nội tiếp đường tròn, Xác định tâm của đường tròn này. b) Chứng minh: MC.MD MH.MO c) Gọi E, F lần lượt là hình chiếu của C lên MA và MB. Tìm giá trị lớn nhất của tích CE.CF khi cát tuyến MCD quay quanh điểm M. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): 2 y mx m 2 1 và parabol: (P): 2 y x a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ 1 2 x x thỏa mãn : 1 2 12 11 2 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa - Vũng Tàu
Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa – Vũng Tàu gồm 5 câu hỏi tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho parabol (P): y = –x^2 và đường thẳng (d): y = 4x – m a) Vẽ parabol (P) b) Tìm tất cả các giá trị của tham số m để (d) và (P) có đúng một điểm chung + Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F. [ads] a) Chứng minh tứ giác CFDH nội tiếp b) Chứng minh CF.CA = CH.CB c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh - TP. HCM
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh – TP. HCM gồm 6 bài tập tự luận, đề thi có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O; R) và điểm M nằm ngoài (O). Vẽ 2 tiếp tuyến MA, MB và cát tuyến MCD của (O) (A, B là tiếp điểm, C nằm giữa M và D; A và C nằm khác phía đối với đường thẳng MO). Gọi I là trung điểm CD. [ads] a) Chứng minh: MB^2 = MC.MD b) Chứng minh tứ giác AOIB nội tiếp c) Tia BI cắt (O) tại J. Chứng minh: AD^2 = AJ.MD d) Đường thẳng qua I song song với DB cắt AB tại K, tia CK cắt OB tại G. Tính bán kính đường tròn ngoại tiếp ∆CIG theo R + Hàng tháng một người gửi vào ngân hàng 5.000.000đ với lãi suất 0,6%/tháng. Hỏi sau 15 tháng người đó nhận được số tiền cả gốc lẫn lãi là bao nhiêu? Biết rằng hàng tháng người đó không rút lãi ra.
Tuyển chọn các đề thi tuyển sinh vào lớp 10 môn Toán - Nguyễn Hoàng Nam
+ Được tuyển chọn từ tổng hợp các đề thi hay nhất của các tỉnh thành phố năm học 2013 – 2014. + Có bổ sung một số câu hỏi trọng tâm thường ra thi. + Các bài hình học khó đều có hình vẽ sẵn, được ký hiệu và ghi sơ đồ để hướng dẫn học sinh suy nghĩ.
Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.