Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 8 năm 2023 - 2024 phòng GDĐT Yên Mô - Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Yên Mô, tỉnh Ninh Bình; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Yên Mô – Ninh Bình : + Một khối chóp đựng nước có dạng hình chóp tứ giác đều S.ABCD có chiều cao bằng 9 dm, diện tích toàn phần bằng 204 và diện tích xung quanh bằng 168. Giả sử người ta sử dụng khối chóp này để chứa nước tưới tiêu cho cây hoa màu. Biết rằng cứ cách một ngày sẽ phải tưới nước một lần, mỗi lần tưới hết 10 lít nước. Hỏi sau bao nhiêu ngày sẽ dùng hết số nước trong khối chóp? + Trong 43 học sinh làm bài kiểm tra, không có học sinh nào bị điểm dưới 2, chỉ có 2 học sinh đạt điểm 10. Chứng minh rằng ít nhất cũng tìm được 6 học sinh có điểm kiểm tra bằng nhau (điểm kiểm tra là một số tự nhiên). + Hai đội bóng bàn của hai trường A và B thi đấu giao hữu. Biết rằng mỗi đối thủ của đội trường A phải lần lượt gặp các đối thủ của đội trường B một lần và số trận đấu gấp đôi tổng số đối thủ của hai đội. Tính số đối thủ của trường A và trường B.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2021 - 2022 phòng GDĐT Đông Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đông Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Tư ngày 09 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Đông Sơn – Thanh Hóa : + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. a) Chứng minh rằng tứ giác AEMD là hình chữ nhật b) Biết diện tích tam giác BCH gấp bốn lần diện tich tam giác AEH.Chứng minh rằng AC = 2EF. c) Chứng minh rằng AD AM AN. + Tìm nghiệm tự nhiên của phương trình. + Chứng minh rằng với mọi số nguyên x, y thì A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 11 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm nghiệm nguyên của phương trình: x2 + 2xy + 2x + 2y – 3y2 = 4. + Cho số tự nhiên n > 2 và số nguyên tố p thỏa mãn p – 1chia hết cho n đồng thời n3 – 1 chia hết cho p. Chứng minh rằng n + p là một số chính phương. + Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D; E; F lần lượt là hình chiếu vuông góc của I lên BC; AB; AC. 1. Chứng minh: Tứ giác AEIF là hình vuông và ID = IE = IF. 2. Tia AI cắt DF tại K. a) Chứng minh rằng tam giác AIB đồng dạng tam giác AFK. b) Qua A kẻ đường thẳng vuông góc với BC, đường thẳng này cắt DF tại P. Gọi M là trung điểm của AB. Tia MI cắt cạnh AC tại Q. Chứng minh tam giác APQ cân. 3. Khi BC cố định, điểm A di chuyển nhưng vẫn thỏa mãn góc BAC = 90° và đoạn AI không đổi bằng a2. Tìm vị trí của A để chu vi tam giác AMQ nhỏ nhất.
Đề chọn học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chọn học sinh giỏi môn Toán lớp 8 năm học 2021 – 2022 phòng GD&ĐT Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Nam Trực – Nam Định.