Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường chuyên Quốc học Huế

Chủ Nhật ngày 05 tháng 07 năm 2020, trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán lần thứ hai năm học 2019 – 2020 dành cho học sinh khối 12. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường chuyên Quốc học Huế mã đề 143 gồm có 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 143, 295, 387, 415. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường chuyên Quốc học Huế : + Biết rằng các số log a; log b; log c theo thứ tự đó lập thành cấp số cộng, đồng thời log a – log 2b; log 2b – log 3c; log 3c – log a theo thứ tự đó cũng tạo thành một cấp số cộng. Tìm khẳng định đúng? A. Không có tam giác nào có ba cạnh là a, b, c. B. a, b, c là ba cạnh của một tam giác tù. C. a, b, c là ba cạnh của một tam giác vuông. D. a, b, c là ba cạnh của một tam giác nhọn. [ads] + Giả sử hàm số y = mx^4 – (m^2 + 2)x^2 + (m^3 + 11m)/9 có đồ thị (C) và hàm số y = x^2 có đồ thị (C) cắt nhau tại bốn điểm phân biệt. Biết rằng hình phẳng (H) giới hạn (C) và (C) là hợp của ba hình phẳng (H1), (H2), (H3) có diện tích tương ứng là S1, S2, S3 trong đó 0 ≤ S1 ≤ S2 ≤ S3 và các hình phẳng (H1), (H2), (H3) đôi một giao nhau tại không quá một điểm. Gọi T là tập hợp các giá trị của m sao cho S3 = S1 + S2. Tính tổng bình phương các phần tử của T. + Cắt một vật thể (T) bởi hai mặt phẳng (P) và (Q) vuông góc với trục Ox lần lượt tại các điểm có hoành độ x = a và x = b (a < b) (xem hình). Một mặt phẳng tùy ý vuông góc với Ox tại điểm có hoành độ x (a ≤ x ≤ b) cắt (T) theo thiết diện có diện tích là S(x). Giả sử S(x) liên tục trên đoạn [a;b]. Khi đó thể tích V của phần vật thể (T) giới hạn bởi hai mặt phẳng (P) và (Q) được tính bởi công thức nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần thứ nhất sở Giáo dục và Đào tạo tỉnh Sơn La; đề thi có đáp án trắc nghiệm mã đề MĐ 101, MĐ 102, MĐ 103, MĐ 104, MĐ 105, MĐ 106, MĐ 107, MĐ 108; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Sơn La : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt bên SAB là tam giác đều cạnh a3, ABC là tam giác vuông tại A có cạnh AC = a, góc giữa đường thẳng AD và mặt phẳng (SAB) bằng 60°. Thể tích khối chóp S.ABCD bằng? + Trong không gian Oxyz, cho hai mặt cầu (S1): (x − 1)2 + (y − 2)2 + (z − 3)2 = 9; (S2): (x − 1)2 + (y − 2)2 + (z − 3)2 = 16 và điểm A(1;6;0). Xét đường thẳng d di động nhưng luôn tiếp xúc với (S1) đồng thời cắt (S2) tại hai điểm B và C phân biệt. Diện tích lớn nhất của tam giác ABC bằng? + Cho hai mặt cầu (S1) và (S2) đồng tâm I, có bán kính lần lượt là R1 = 2 và R2 = 10. Xét tứ diện ABCD có hai đỉnh A và B nằm trên (S1) và hai đỉnh C và D nằm trên (S2). Thể tích lớn nhất của khối tứ diện ABCD thuộc khoảng nào dưới đây?
Đề thi thử Toán TN THPT 2023 lần 1 trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2023 lần 1 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi (mã đề 123). Trích dẫn Đề thi thử Toán TN THPT 2023 lần 1 trường chuyên Lê Khiết – Quảng Ngãi : + Cho lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân tại B và AB = a3. Hình chiếu vuông góc của A’ lên mặt phẳng (ABC) là điểm H thuộc cạnh AC sao cho HC = 2HA. Mặt bên (ABB’A’) tạo với đáy một góc 60°. Thể tích khối lăng trụ đã cho bằng? + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AB = BC = a3, góc SAB = SCB = 90° và khoảng cách từ A đến mặt phẳng (SBC) bằng a2. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC. + Trong không gian Oxy, cho điểm A(0;0;3) và điểm B thay đổi thuộc mặt phẳng (Oxy) sao 3/2. Gọi C là điểm trên tia Oz thỏa mãn d[C;AB] = d[C;OB] = k. Thể tích của khối tròn xoay tạo bởi tập hợp tất cả các điểm M mà CM =< k thuộc khoảng nào dưới đây?
Đề thi thử TN THPT 2023 môn Toán trường chuyên Biên Hòa - Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán trường THPT chuyên Biên Hòa, tỉnh Hà Nam (mã đề 101). Trích dẫn Đề thi thử TN THPT 2023 môn Toán trường chuyên Biên Hòa – Hà Nam : + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d và mặt phẳng (P): 3x – 3y + 2z + 6 = 0. Khẳng định nào dưới đây đúng? A. d nằm trong (P). B. d song song với (P). C. d vuông góc với (P). D. d cắt và không vuông góc với (P). + Cửa hàng A có đặt trước sảnh một cái nón lớn với chiều cao 1,35 m và sơn cách điệu hoa văn trang trí một phần mặt ngoài của hình nón ứng với cung nhỏ AB như hình vẽ. Biết AB = 1,45 m, ACB = 150° và giá tiền trang trí là 2.000.000 đồng mỗi mét vuông. Hỏi số tiền mà cửa hàng A cần dùng để trang trí là bao nhiêu? + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2;2), B(2;–2;0). Gọi I1(1;1;−1) và I2(3;1;1) là tâm của hai đường tròn nằm trên hai mặt phẳng khác nhau và có chung một dây cung AB. Biết rằng luôn có một mặt cầu (S) đi qua cả hai đường tròn ấy. Tính bán kính R của (S).
Đề thi thử TN THPT 2023 môn Toán trường PTDL Hermann Gmeiner - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán trường PTDL Hermann Gmeiner, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết mã đề 001. Trích dẫn Đề thi thử TN THPT 2023 môn Toán trường PTDL Hermann Gmeiner – TP HCM : + Cho (H) là hình phẳng giới hạn bởi đồ thị hàm số 2 yx x 4 4 trục hoành và trục tung. Đường thẳng d qua A(0;4) và có hệ số góc k k chia hình (H) thành hai phần có diện tích bằng nhau. Giá trị của k bằng? + Trong không gian Oxyz cho mặt cầu 2 22 4 Sx y z và hai điểm A(1;2;4), B(0;0;1). Mặt phẳng P ax by cz 3 0 abc đi qua A B và cắt S theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Giá trị của abc bằng? + Cho khối nón đỉnh S có đáy là đường tròn tâm O bán kính R. Trên đường tròn (O) lấy hai điểm A B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng 2 2R. Thể tích khối nón đã cho bằng?