Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng phương pháp quy nạp toán học, dãy số

Tài liệu gồm 43 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề phương pháp quy nạp toán học, dãy số, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3: Dãy Số, Cấp Số Cộng Và Cấp Số Nhân. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Biết được thứ tự các bước giải toán bằng phương pháp quy nạp. + Biết khái niệm dãy số, cách cho dãy số, tính chất đơn điệu và bị chặn của dãy số. + Nắm được phương pháp giải các dạng bài tập của dãy số như tìm số hạng tổng quát, xét tính tăng, giảm và bị chặn. Kĩ năng: + Chứng minh được các bài toán bằng phương pháp quy nạp toán học. + Biết cách xác định dãy số. + Xét được tính tăng, giảm và bị chặn của dãy số. + Tính được tổng của một dãy số. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1: Quy nạp toán học. Dạng 2: Tìm số hạng và xác định công thức số hạng tổng quát của dãy số. Dạng 3: Xét tính tăng, giảm và bị chặn của dãy số. + Bài toán 1: Xét tính tăng, giảm của dãy số. + Bài toán 2. Xét tính bị chặn của dãy số. Dạng 4. Tính tổng của dãy số. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.

Nguồn: toanmath.com

Đọc Sách

Phương pháp xác định công thức tổng quát của dãy số - Nguyễn Tất Thu
Tài liệu phương pháp xác định công thức tổng quát của dãy số của tác giả Nguyễn Tất Thu gồm 46 trang. Tài liệu gồm 3 nội dung chính: + Sử dụng cấp số cộng – cấp số nhân để xây dựng cách tìm công thức tổng quát của một số dạng dãy số có công thức truy hồi đặc biệt. + Sử dụng phép thế lượng giác để xác định công thức tổng quát của dãy số. + Ứng dụng bài toán tìm công thức tổng quát của dãy số vào giải một số bài toán về dãy số – tổ hợp. [ads]
Kĩ thuật tính giới hạn của dãy số cho bởi công thức truy hồi - Huỳnh Đoàn Thuần
Tài liệu gồm 24 trang trình bày kĩ thuật tính giới hạn của dãy số cho bởi công thức truy hồi, các dạng toán trong tài liệu gồm: + Dạng 1: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách xác đinh CTTQ của dãy + Dạng 2: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách sử dụng nguyên lý kẹp + Dạng 3: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách sử dụng tính đơn điệu và bị chặn [ads]
Phân dạng bài tập về phương pháp quy nạp toán học và dãy số
Tài liệu gồm 14 trang phân dạng và hướng dẫn giải chi tiết các bài toán về phương pháp quy nạp toán học và dãy số. $1 – Phương pháp quy nạp toán học: A – Tóm tắt SGK B – Giải toán C – Bài tập rèn luyện D – Hướng dẫn, đáp số [ads] $2 – Dãy số A – Tóm tắt SGK B – Giải toán + Dạng 1: Xác định các số hạng của dãy số + Dạng 2: Xác định số hạng tông quát (SHTQ) của dãy số cho bởi hệ thức truy hồi + Dạng 3: Chứng minh dãy số tăng, giảm (xét tính đơn điệu) + Dạng 4: Xét tính bị chặn C – Bài tập rèn luyện D – Hướng dẫn, đáp số
Trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018
Tài liệu gồm 86 trang tổng hợp, phân loại và giải chi tiết các câu hỏi và bài tập trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018 : + (THPT Thạch Thành 2 – Thanh Hóa – lần 1 năm 2017 – 2018) Trong các phát biểu sau, phát biểu nào là sai? A. Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. B. Một cấp số cộng có công sai dương là một dãy số dương. C. Một cấp số cộng có công sai dương là một dãy số tăng. D. Dãy số có tất cả các số hạng bằng nhau là một cấp số cộng. [ads] + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH 2017 – 2018) Trong các phát biểu sau, phát biểu nào là sai? A. Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. B. Dãy số có tất cả các số hạng bằng nhau là một cấp số cộng. C. Một cấp số cộng có công sai dương là một dãy số tăng. D. Một cấp số cộng có công sai dương là một dãy số dương. + (ĐHQG TPHCM – Cơ Sở 2 – năm 2017 – 2018) Người ta trồng 465 cây trong một khu vườn hình tam giác như sau: Hàng thứ nhất có 1 cây, hàng thứ hai có 2 cây,  hàng thứ ba có 3 cây …. Số hàng cây trong khu vườn là?