Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Sơn Tây Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Sơn Tây Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng lớp 9 môn Toán năm 2022-2023 phòng GD ĐT Sơn Tây Hà Nội Đề khảo sát chất lượng lớp 9 môn Toán năm 2022-2023 phòng GD ĐT Sơn Tây Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay chúng ta sẽ cùng điểm qua một số câu hỏi trong đề kiểm tra khảo sát chất lượng học sinh lớp 9 môn Toán năm học 2022-2023 do Phòng Giáo dục và Đào tạo UBND thị xã Sơn Tây, thành phố Hà Nội tổ chức. Trích dẫn một số câu hỏi trong đề khảo sát: 1. Một chiếc máy bay bay lên với vận tốc 400km/h. Đường bay lên tạo với phương nằm ngang một góc 30 độ. Hỏi sau 3 phút kể từ lúc cất cánh, máy bay lên cao được bao nhiêu kilômét theo phương thẳng đứng? 2. Mảnh vườn nhà bạn Minh hình chữ nhật có chu vi là 124m. Gia đình Minh đã mở rộng chiều dài thêm 5m và chiều rộng thêm 3m, diện tích mảnh vườn tăng thêm 255m2. Hãy tính chiều dài và chiều rộng của mảnh vườn lúc đầu. 3. Trên mặt phẳng tọa độ Oxy, cho các đường thẳng (d1): y = (m - 2)x + 2m - 5 và (d2): y = (m + 1)x + 4. Hãy tìm tọa độ giao điểm của (d1) và (d2) khi m = 3. Sau đó, tìm các giá trị của m để |x1| - y1 = 0, với x1 và y1 là tọa độ giao điểm của (d1) với Ox và Oy. Chúc quý thầy cô và các em học sinh thực hiện đề kiểm tra khảo sát môn Toán một cách tốt nhất. Hy vọng rằng mọi người sẽ có kết quả xuất sắc!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN - Hà Nội (Vòng 2)
Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN – Hà Nội (Vòng 2) gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2021.
Đề khảo sát Toán 9 năm 2020 - 2021 trường Hoàng Hoa Thám - Hà Nội
Đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề khảo sát Toán 9 lần 3 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho đường tròn (O, 3cm) và đường tròn (O’, 4cm). Biết độ dài đoạn nối tâm OO’ = 6cm. Khẳng định nào sau đây đúng? A. Hai đường tròn (O) và (O’) tiếp xúc nhau. B. Hai đường tròn (O) và (O’) cắt nhau. C. Hai đường tròn (O) và (O’) ở ngoài nhau. D. Đường tròn (O’) đựng đường tròn (O). + Cho hai đường tròn (O), (O’) tiếp xúc ngoài tại A. Gọi AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O’), DE là tiếp tuyến chung của hai đường tròn. K là giao điểm của BD và CE. a) Tính số đo DAE. b) Tứ giác ADKE là hình gì? Vì sao? c) Chứng minh AK là tiếp tuyến chung của 2 đường tròn (O) và (O’). d) Gọi M là trung điểm của BC. Chứng minh MK DE. + Cho hàm số bậc nhất: y = (m – 1)x + 1 (m là tham số). a) Tìm m để hàm số nghịch biến trên R. b) Vẽ đồ thị hàm số khi m = -1. c) Tìm m để đồ thị của hàm số đã cho cắt đường thẳng y = x -3 tại điểm có hoành độ bằng -2.
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Một máy bay cất cánh theo phương có góc nghiêng là 23°. Hỏi muốn đạt độ cao là 2500m, máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn đến mét). + Cho tam giác đều ABC nội tiếp đường tròn tâm O. Trên cạnh BC lấy điểm N, gọi E và F theo thứ tự là hình chiếu của N lên AB, AC. Gọi D là trung điểm của ВC. a) Chứng minh rằng bốn điểm A, E, N, F cùng thuộc một đường tròn. Xác định tâm I của đường tròn đó. b) Chứng minh rằng BN.BD = BE.BA. c) Chứng minh rằng ED = FD. d) Gọi H là giao điểm của hai đường chéo của tứ giác EIFD. Chứng minh O, H, N thẳng hàng. + Cho xy + yz + zx = 1. Tìm giá trị nhỏ nhất của P = 3(x2 + y2) + z2.