Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tách phân dạng toán đề thi TN THPT môn Toán (2017 - 2023) phần Hình học

Tài liệu gồm 239 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Hình học, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ THỂ TÍCH KHỐI ĐA DIỆN 2. BÀI 1 – KHÁI NIỆM KHỐI ĐA DIỆN 2. Tóm tắt lý thuyết cơ bản 2. Dạng toán cơ bản 3. + Dạng ➀: Câu hỏi về đỉnh, cạnh, mặt của một khối đa diện 3. + Dạng ➁: Phân chia, lắp ghép các khối đa diện 3. BÀI 2 – KHỐI ĐA DIỆN LỒI – ĐA DIỆN ĐỀU 5. Tóm tắt lý thuyết cơ bản 5. Dạng toán cơ bản 6. + Dạng ➀: Tính chất đối xứng và tính chất HH khác của khối đa diện 6. BÀI 3 – THỂ TÍCH KHỐI CHÓP 8. Tóm tắt lý thuyết cơ bản 8. Dạng toán cơ bản 10. + Dạng ➀: Câu hỏi dạng lý thuyết (công thức V, h, B; có sẵn h, B) 10. + Dạng ➁: Tính thể tích các khối chóp liên quan cạnh bên vuông góc đáy 14. + Dạng ➂: Thể tích khối chóp đều 19. + Dạng ➃: Thể tích khối chóp khác 24. + Dạng ➄: Tỉ số thể tích trong khối chóp 36. BÀI 4 – THỂ TÍCH KHỐI LĂNG TRỤ 42. Tóm tắt lý thuyết cơ bản 42. Dạng toán cơ bản 43. + Dạng ➀: Câu hỏi dạng lý thuyết (công thức V, h, B ; có sẵn h, B) 43. + Dạng ➁: Diện tích xung quanh, diện tích toàn phần và câu hỏi liên quan thể tích lăng trụ đứng 45. + Dạng ➂: Thể tích khối lăng trụ đều 59. + Dạng ➃: Câu hỏi liên quan đến thể tích (góc, khoảng cách) 61. + Dạng ➄: Bài toán cực trị 63. + Dạng ➅: Bài toán thực tế về khối đa diện 65. CHUYÊN ĐỀ MẶT TRÒN XOAY 66. BÀI 1 – MẶT NÓN 66. Tóm tắt lý thuyết cơ bản 66. Dạng toán cơ bản 66. + Dạng ➀: Câu hỏi lý thuyết về khối nón 66. + Dạng ➁: Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản 67. + Dạng ➂: Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối nón 84. + Dạng ➃: Khối nón kết hợp khối đa diện 88. + Dạng ➄: Bài toán cực trị về khối nón 88. BÀI 2 – MẶT TRỤ 90. Tóm tắt lý thuyết cơ bản 90. Dạng toán cơ bản 90. + Dạng ➀: Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản 90. + Dạng ➁: Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ 101. + Dạng ➂: Bài toán cực trị về khối trụ 102. + Dạng ➃: Bài toán thực tế về khối trụ 103. + Dạng ➄: Thể tích khối tròn xoay 109. + Dạng ➅: Khối tròn xoay nội tiếp, ngoại tiếp và kết hợp khối đa diện 110. BÀI 3 – MẶT CẦU 112. Tóm tắt lý thuyết cơ bản 112. Dạng toán cơ bản 113. + Dạng ➀: Câu hỏi chỉ liên quan đến biến đổi V, S, R 113. + Dạng ➁: Khối cầu nội – ngoại tiếp, liên kết khối đa diện 116. + Dạng ➂: Bài toán tổng hợp về khối nón, khối trụ, khối cầu 124. CHUYÊN ĐỀ PHƯƠNG PHÁP TỌA ĐỘ TRONG KG OXYZ 130. BÀI 1 – HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN OXYZ 130. Tóm tắt lý thuyết cơ bản 130. Dạng toán cơ bản 132. + Dạng ➀: Liên quan tọa độ điểm, véc – tơ trong hệ trục Oxyz 132. + Dạng ➁: Tích vô hướng và ứng dụng (độ dài, góc, khoảng cách) 137. + Dạng ➂: Xác định tâm, bán kính, diện tích, thể tích của cầu 138. + Dạng ➃: Viết phương trình mặt cầu 142. + Dạng ➄: Vị trí tương đối của hai mặt cầu, điểm với mặt cầu 146. + Dạng ➅: Các bài toán cực trị liên quan đến điểm, mặt cầu 156. BÀI 2 – PHƯƠNG TRÌNH ĐƯỜNG THẲNG 162. Tóm tắt lý thuyết cơ bản 162. Dạng toán cơ bản 164. + Dạng ➀: Viết phương trình đường thẳng biết yếu tố điểm, vectơ, song song hay vuông góc (với đường thẳng, mặt phẳng) 165. + Dạng ➁: Viết phương trình đường thẳng liên quan đến tương giao 182. + Dạng ➂: Viết phương trình đường thẳng liên quan đến góc, khoảng cách, diện tích 186. + Dạng ➃: Tọa độ điểm liên quan đến đường thẳng và bài toán liên quan 191. + Dạng ➄: Phương trình mặt phẳng liên quan đến đường thẳng 194. + Dạng ➅: Bài toán về khoảng cách liên quan đến đường thẳng 195. + Dạng ➆: Câu hỏi về VTTĐ liên quan đến đường thẳng (song song, nằm trên) 196. + Dạng ➇: Hình chiếu của điểm lên đường thẳng và bài toán liên quan 196. BÀI 3 – PHƯƠNG TRÌNH MẶT PHẲNG 198. Tóm tắt lý thuyết cơ bản 198. Dạng toán cơ bản 199. + Dạng ➀: Xác định VTPT 200. + Dạng ➁: Viết phương trình mặt phẳng không dùng PT đường thẳng 203. + Dạng ➂: Vị trí tương đối liên quan mặt phẳng – điểm 214. + Dạng ➃: Tìm tọa độ điểm liên quan đến mặt phẳng 215. + Dạng ➄: Viết phương trình mặt cầu liên quan đến mặt phẳng 217. + Dạng ➅: Các bài toán cực trị liên quan điểm, mặt phẳng, mặt tròn xoay 218. + Dạng ➆: PTMP theo đoạn chắn 225. + Dạng ➇: Hình chiếu của điểm lên mặt phẳng và bài toán liên quan 226. + Dạng ➈: PTMP liên quan đến góc, khoảng cách, không dùng PTĐT 227. + Dạng ➉: Câu hỏi liên quan đến VTCP của đường thẳng 232.

Nguồn: toanmath.com

Đọc Sách

Phát triển các bài toán VD - VDC trong đề thi TN THPT 2021 môn Toán (đợt 1)
Tài liệu gồm 43 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm Strong Team Toán VD – VDC, phát triển các bài toán mức độ vận dụng – vận dụng cao (câu 36 – 37 – 38 – 39 – 40 – 41 – 42 – 43 – 44 – 45 – 46 – 47 – 48 – 49 – 50) trong đề thi chính thức tốt nghiệp Trung học Phổ thông năm 2021 môn Toán (đợt 1) – mã đề 101, có đáp án và lời giải chi tiết. Tài liệu hữu ích dành cho các em học sinh tham dự kỳ thi tốt nghiệp THPT năm 2021 môn Toán đợt 2 và giúp quý thầy, cô giáo tham khảo trong các năm học tới. Trích dẫn tài liệu phát triển các bài toán VD – VDC trong đề thi TN THPT 2021 môn Toán (đợt 1): + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P x y z 2 2 15 0. Gọi M là điểm di động trên P N là điểm thuộc tia OM sao cho OM ON 10. Khoảng cách nhỏ nhất từ N đến mặt phẳng P bằng bao nhiêu? + Cho hai hàm số 4 2 f x x ax bx 1 và 2 g x cx dx 3 a b c d. Biết rằng đồ thị của hàm số y f x và y g x cắt nhau tại hai điểm có hoành độ lần lượt là -2 và 1. Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng? + Trong tập số phức, cho phương trình 2 2 2 2 1 3 2 0 z m z m m m. Có bao nhiêu giá trị nguyên của m trong đoạn 0 2021 để phương trình có 2 nghiệm phân biệt 1 2 z z thỏa mãn 1 2 z z? + Cho hình trụ đứng có hai đáy là hai đường tròn tâm O và tâm O’, bán kính bằng a, chiều cao hình trụ bằng 2a. Mặt phẳng đi qua trung điểm OO’ và tạo với OO’ một góc 30 độ, cắt đường tròn đáy tâm O theo dây cung AB. Độ dài đoạn AB là? + Với mọi số thực a, b, c thỏa mãn log 2log 3log 1 1 3 a b c 3 27 khẳng định đúng là?
Phát triển các câu VD - VDC trong đề tham khảo TN THPT 2021 môn Toán
Tài liệu gồm 60 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Giáo Viên Toán Việt Nam, phân tích, định hướng tìm lời giải và xây dựng các bài toán tương tự các câu vận dụng – vận dụng cao trong đề thi tham khảo tốt nghiệp THPT năm 2021 môn Toán (câu 41 – câu 42 – câu 43 – câu 44 – câu 45 – câu 46 – câu 47 – câu 48 – câu 49 – câu 50). Trích dẫn tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán: + Đây là bài toán tính tích phân của hàm hợp. Để tính được tích phân trên ta phải thực hiện phép đổi biến để đưa về hàm đã cho. Cụ thể các bước thực hiện như sau: Bước 1: Đặt 2sin 1 x t. Bước 2: Biểu thị cos dx x theo tdt. Bước 3: Đổi cận và tính tích phân d b a f t t. Đây là dạng toán thuộc mức độ vận dụng, việc nhận ra hướng giải đòi hỏi học sinh phải nắm chắc các khái niệm và tính chất của tích phân cũng như các phương pháp tính tích phân. Học sinh thường lúng túng, và dễ mắc sai lầm khi tách cận hoặc quên nhân thêm phân số 1 2 để tính 3 1 1 d 2 I f t t dẫn đến có thể chọn các đáp án nhiễu. + Hướng phát triển: Xét các số phức thỏa mãn điều kiện (cho một giả thiết về modun, một giả thiết về số thuần ảo/ số thực) đưa về phương trình hoặc hệ phương trình. Nếu cho giả thiết số thuần ảo thì chỉ cần xác định phần thực và cho bằng 0. Nếu cho giả thiết là số thực thì chỉ cần xác định phần ảo và cho bằng 0. + Bài toán trên là bài toán về tính thể tích khối chóp liên quan góc giữa một đường thẳng và mặt phẳng. Thông thường đề bài hay cho góc giữa một cạnh bên và mặt đáy của hình chóp liên quan đến chân đường cao của hình chóp, tức hình chiếu của đường thẳng lên mặt phẳng tương đối dễ xác định, thì dạng bài này đề lại cho góc giữa một đường thẳng và mặt phẳng mà tương đối khó xác định hình chiếu của đường lên mặt hơn. Khi xác định được góc giữa đường thẳng và mặt phẳng suy ra độ dài đường cao, từ đó tính thể tích khối chóp. Để làm tốt được bài tập dạng này các em cần nắm chắc phương pháp xác định góc giữa đường thẳng và mặt phẳng sau đây.
Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán - Huỳnh Văn Ánh
Tài liệu gồm 239 trang, được biên soạn bởi thầy giáo Huỳnh Văn Ánh, trình bày kiến thức cần ghi nhớ và tuyển chọn các bài tập trắc nghiệm 50 dạng toán được phát triển từ đề tham khảo (đề minh họa) thi tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo. Dạng toán 1. Phép đếm – hoán vị – chỉnh hợp – tổ hợp. Dạng toán 2. Cấp số cộng – cấp số nhân. Dạng toán 3. Xét tính đơn điệu dựa vào bảng biến thiên và đồ thị. Dạng toán 4 – 5. Cực trị – số cực trị của hàm số khi biết bảng biến thiên – đồ thị – hàm số cho bởi công thức f(x) và f'(x). Dạng toán 6. Tiệm cận của đồ thị hàm số biết bảng biến thiên – đồ thị – biểu thức hàm số. Dạng toán 7. Nhận dạng đồ thị của hàm số và hệ số của biểu thức hàm số. Dạng toán 8. Sự tương giao của đồ thị hàm số. Dạng toán 9. Giá trị – rút gọn – logarit – đơn giản. Dạng toán 10. Đạo hàm của hàm số mũ – logarit. Dạng toán 11. Rút gọn luỹ thừa – mũ – đơn giản. Dạng toán 12. Phương trình mũ đơn giản. Dạng toán 13. Phương trình logarit đơn giản. Dạng toán 14 – 15. Nguyên hàm của các hàm số đơn giản. Dạng toán 16 – 17. Sử dụng các tính chất để tính tích phân – tích phân các hàm số đơn giản. Dạng toán 18. Số phức liên hợp – các phép toán số phức – biểu diễn số phức trên mặt phẳng phức. Dạng toán 21 – 22. Thể tích khối đa diện đơn giản. Dạng toán 23 – 24. Thể tích – diện tích xung quanh – diện tích toàn phần của khối nón – trụ – cầu đơn giản. Dạng toán 25. Toạ độ điểm – toạ độ vectơ. Dạng toán 26. Phương trình mặt cầu cơ bản. Dạng toán 27. Phương trình mặt phẳng cơ bản – điểm thuộc hoặc không thuộc mặt phẳng – VTPT của mặt phẳng. Dạng toán 28. Phương trình đường thẳng cơ bản – điểm thuộc hoặc không thuộc đường thẳng – VTCP của đường thẳng. Dạng toán 29. Xác suất. Dạng toán 31. Giá trị lớn nhất và giá trị nhỏ nhất của các hàm số đơn giản. Dạng toán 32. Bất phương trình mũ – logarit cơ bản. Dạng toán 35. Góc và khoảng cách trong không gian thuần tuý. Dạng toán 39. Giá trị lớn nhất – giá trị nhỏ nhất hàm ẩn – hàm hợp. Dạng toán 40. Tìm số điểm, cặp điểm thoả mãn biểu thức chứa mũ – logarit – VD – VDC. Dạng toán 41. Tích phân hàm cho bởi nhiều công thức – tích phân hàm ẩn – tích phân VD – VDC. Dạng toán 42. Số phức VD – VDC. Dạng toán 43. Thể tích khối đa diện VD – VDC. Dạng toán 44. Toán thực tế VD – VDC. Dạng toán 45. Phương trình đường thẳng VD – VDC. Dạng toán 46. Cực trị hàm ẩn – hàm hợp – VD – VDC. Dạng toán 47. Tìm số giá trị nguyên thoả biểu thức mũ – logarit. Dạng toán 48. Ứng dụng tích phân về tỉ số diện tích. Dạng toán 49. Max – min số phức. Dạng toán 50. Tổng hợp toạ độ trong không gian – VD – VDC.
Phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán - Lê Văn Đoàn
Tài liệu gồm 146 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán, với những câu hỏi và bài tập trắc nghiệm tương tự, có đáp án; tài liệu giúp học sinh lớp 12 rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2020 – 2021 do Bộ Giáo dục và Đào tạo tổ chức. 50 dạng toán đề minh họa TN THPT 2021 môn Toán: 1. Hoán vị – Chỉnh hợp – Tổ hợp: Cách chọn người / vật đơn giản. 2. Cấp số cộng: Cho trước u1 và ui. 3. Đơn điệu hàm số: Biết bảng biến thiên. 4. Cực trị hàm số: Biết bảng biến thiên. 5. Cực trị hàm số: Biết bảng xét dấu f'(x). 6. Tiệm cận đồ thị hàm số. Tìm TCĐ – TCN khi biết trước ĐTHS tường minh. 7. Khảo sát đồ thị: Tìm hàm số khi biết đồ thị. 8. Tương giao hàm số: Đồ thị cắt trục tung – trục hoành. 9. Logarit: Rút gọn biểu thức logarit đơn giản. 10. Đạo hàm hàm số mũ: Hàm y = a^x. 11. Lũy thừa: Rút gọn lũy thừa đơn giản. 12. Phương trình mũ: Phương trình a^f(x) = b. 13. Phương trình logarit: Phương trình log a (kx + q) = b. 14. Nguyên hàm đa thức: Đa thức bậc 2 – 3 – 4. 15. Nguyên hàm lượng giác: Lượng giác: f(x) = cos(u(x)). 16. Tích phân: Tính tích phân dựa vào tính chất. 17. Tích phân: Đa thức. 18. Số phức: Tìm số phức liên hợp. 19. Số phức: Các phép toán cộng – trừ. 20. Số phức: Tìm điểm biểu diễn của số phức cho trước. 21. Khối đa diện: Tính V biết trước chiều cao – diện tích đáy. 22. Khối đa diện: Tính V biết các kích thước khối hộp. 23. Khối tròn xoay: Xác định công thức tính V. 24. Khối tròn xoay: Tính diện tích xung quanh biết r và l. 25. Hệ Oxyz: Tìm tọa độ trung điểm. 26. Hệ Oxyz: Tìm tâm – bán kính mặt cầu. 27. Phương trình mặt phẳng: Tìm mặt phẳng đi qua điêm cho trước. 28. Phương trình đường thẳng: Tìm VTCP đường thẳng đi qua hai điểm cho trước. 29. Xác suất: Tính xác suất chọn được số chẵn – lẻ. 30. Đơn điệu hàm số: Tìm HS đơn điệu trên R. 31. GTLN – GTNN: Tìm max – min trên đoạn. 32. BPT mũ: Giải BPT mũ. 33. Tích phân: Tính tích phân dựa vào tính chất. 34. Số phức: Tính module của tích hai số phức. 35. Góc giữa đường – mặt: Tính góc giữa đường và mặt trong hình hộp. 36. Khoảng cách từ điểm – mặt: Tính khoảng cách từ đỉnh đến mặt đáy của chóp đều. 37. Phương trình mặt cầu: Viết PTMC có tâm và đi qua điểm cho trước. 38. Phương trình đường thẳng: Viết PTĐT đi qua hai điểm cho trước. 39. GTLN – GTNN: Tìm max – min hàm hợp trên đoạn. 40. Bất phương trình mũ: Tìm cặp nghiệm nguyên thỏa BPT. 41. Tích phân: Tính TP hàm ẩn. 42. Số phức: Tìm số phức thỏa nhiều điều kiện cho trước. 43. Khối đa diện: Tính V biết chiều cao khối đa diện và góc giữa mặt bên và mặt đáy. 44. Khối đa diện: Bài toán thực tế. 45. Phương trình đường thẳng: Viết PTĐT thỏa nhiều điều kiện với MP, đường thẳng khác. 46. Cực trị: Tìm cực trị hàm hợp khi biết bảng xét dấu. 47. Phương trình logarit – mũ: Tìm tham số để biến số phụ thuộc vào biểu thức cho trước. 48. Ứng dụng tích phân: Tìm tỉ số diện tích, biết đồ thị hàm số. 49. Số phức: Cực trị số phức. 50. Phương trình mặt phẳng: Tìm hệ số PTMP thỏa mãn các điều kiện cho trước (lồng ghép với khối tròn xoay).