Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Ninh Phước Ninh Thuận

Nội dung Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Ninh Phước Ninh Thuận Bản PDF - Nội dung bài viết Đề thi học sinh giỏi huyện Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT Ninh Phước - Ninh Thuận Đề thi học sinh giỏi huyện Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT Ninh Phước - Ninh Thuận Chào quý thầy cô và các em học sinh lớp 8! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi học sinh giỏi huyện Toán lớp 8 năm học 2018 - 2019 do phòng GD&ĐT huyện Ninh Phước, tỉnh Ninh Thuận tổ chức. 1. Bài toán đầu tiên yêu cầu chúng ta tìm giá trị của x sao cho biểu thức A = (x - 1)(x + 2)(x + 3)(x + 6) đạt giá trị nhỏ nhất. Để giải bài toán này, chúng ta cần áp dụng kiến thức về đạo hàm và điểm cực tiểu của hàm số. 2. Bài toán tiếp theo đưa ra hình bình hành ABCD với DC = 2AD, I là trung điểm của cạnh CD, HI vuông góc với AB tại H. Gọi E là giao điểm của AI và DH. Chúng ta cần chứng minh một số quy luật trong tam giác và hình học để giải quyết bài toán này. 3. Bài toán cuối cùng liên quan đến tam giác vuông ABC tại A, với AD là phân giác và BD = 14√3, CD = 3√17. Chúng ta cần tính độ dài các cạnh góc vuông của tam giác. Đây là bài toán yêu cầu chúng ta áp dụng kiến thức về phân giác trong tam giác và tính chất của tam giác vuông. Qua các bài toán trên, chúng ta sẽ học được nhiều kiến thức và kỹ năng mới trong môn Toán. Chúc quý thầy cô và các em học sinh có kỳ thi học sinh giỏi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2017 - 2018 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hình thoi ABCD cạnh a có. Hai đường chéo AC và BD cắt nhau tại O, E thuộc tia BC sao cho, AE cắt CD tại F. Trên hai đoạn AB và AD lần lượt lấy hai điểm G và H sao cho CG song song với FH. a) Tính diện tích hình thoi ABCD theo a. b) Chứng minh rằng. c) Tính số đo góc GOH. + Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Tính giá trị của biểu thức: Q = P(-2) + 7P(6). + Cho 3 số nguyên tố x < y < z liên tiếp thỏa mãn là một số nguyên tố. Chứng minh rằng cũng là một số nguyên tố.
Đề Olympic Toán 8 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic Toán 8 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. 1) Chứng minh AB2 = 4 AC.BD. 2) Kẻ OM vuông góc CD tại M. Chứng minh AC = CM. 3) Từ M kẻ MH vuông góc AB tại H. Chứng minh BC đi qua trung điểm MH. + Cho đa thức f(x) = x3 – 3×2 + 3x – 4. Với giá trị nguyên nào của x thì giá trị của đa thức f(x) chia hết cho giá trị của đa thức x2 + 2. + Cho x, y, z là các số dương thỏa mãn x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức: P.
Đề học sinh giỏi Toán 8 năm 2017 - 2018 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương : + Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Chứng minh: a) Tứ giác BEDF là hình bình hành. b) CH.CD = CB.CK. c) AB.AH + AD.AK = AC2. + Cho biểu thức M. a) Tìm điều kiện của x để M xác định và rút gọn M. b) Tìm tất các giá trị của x để M > 0. + Xác định một đa thức bậc ba f(x) không có hạng tử tự do sao cho: f(x) – f(x – 1) = x2.
Đề HSG Toán 8 cấp thành phố năm 2017 - 2018 phòng GDĐT TP Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề HSG Toán 8 cấp thành phố năm 2017 – 2018 phòng GD&ĐT TP Bắc Giang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 8 cấp thành phố năm 2017 – 2018 phòng GD&ĐT TP Bắc Giang : + Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Trên cạnh AB lấy M (0 < MB < MA) và trên cạnh BC lấy N sao cho 0 < MON < 90. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE. 1. Chứng minh tam giác MON vuông cân. 2. Chứng minh MN song song với BE. 3. Chứng minh CK vuông góc với BE. + Cho x, y là số hữu tỷ khác 1 thỏa mãn. Chứng minh M = x2 + y2 – xy là bình phương của một số hữu tỷ. + Tìm tất cả các cặp số nguyên (x; y) thoả mãn.