Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm 2019 - 2020 trường chuyên Thăng Long - Lâm Đồng

Ngày … tháng 12 năm 2019, trường THPT chuyên Thăng Long, thành phố Đà Lạt, tỉnh Lâm Đồng tổ chức kì thi kiểm tra khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2019 – 2020. Đề thi HK1 Toán 10 năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng mã đề 181 gồm có 4 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp tự luận theo tỉ lệ điểm 70 : 30. phần trắc nghiệm gồm 35 câu, phần tự luận gồm 3 câu, học sinh có 90 phút để hoàn thành bài thi học kì, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng : + Cho ba điểm M, N, P bất kỳ thỏa mãn đẳng thức MN = 3MP. Chọn khẳng định sai trong các khẳng định sau: A. Vectơ MN và vectơ PN cùng phương. B. Điểm P nằm giữa hai điểm M và N. C. Ba điểm M, N, P là 3 đỉnh của một tam giác. D. Ba điểm M, N, P thẳng hàng. + Một số tự nhiên có hai chữ số. Nếu lấy số đó trừ đi hai lần tổng các chữ số của nó thì được kết quả là 51. Nếu lấy hai lần chữ số hàng chục cộng với ba lần chữ số hàng đơn vị thì được kết quả là 29. Hỏi số tự nhiên ấy có giá trị thuộc khoảng nào trong các khoảng sau? [ads] + Một cửa hàng buôn giày nhập một đôi giày với giá là 40 đôla. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x đôla thì mỗi tháng khách hàng sẽ mua (120 − x) đôi. Hỏi cửa hàng bán một đôi giày với giá bao nhiêu thì sẽ thu lãi nhiều nhất? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có các đỉnh A(−4;1), B(2;4), C(2;-2). a. Chứng minh rằng tam giác ABC cân tại A. b. Tìm tọa độ trực tâm H của tam giác ABC. + Cho đường thẳng d: y = 2x + 2020, đường thẳng d’ song song với đường thẳng d và đi qua điểm M(0;3). Phương trình đường thẳng d’ là?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Dương Văn Dương - TP HCM
Đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Dương Văn Dương, thành phố Hồ Chí Minh gồm 01 trang với 07 câu tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Dương Văn Dương – TP HCM : + Ông A có một miếng đất hình vuông. Ông khai hoang mở rộng thêm một bề 8m, một bề 12m thành một miếng đất hình chữ nhật (như hình vẽ). Sau khi mở rộng diện tích của miếng đất tăng thêm 3136 m2. Tính độ dài các cạnh của miếng đất sau khi ông A khai hoang mở rộng? + Trong mặt phẳng Oxy, cho ba điểm 𝐴(−3;3), 𝐵(4;4) và C(1;3). a) Tìm tọa độ điểm G là trọng tâm tam giác ABC. b) Tìm tọa độ điểm 𝑁 thỏa mãn AN = NB – 3BC. c) Tìm tọa độ điểm M thuộc trục tung để tam giác ABM vuông tại M. + Xác định parabol (P): 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, biết (P) có đỉnh 𝐼(2;1) và cắt trục hoành tại điểm có hoành độ 𝑥 = 3.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT An Lạc - TP HCM
Đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT An Lạc – TP HCM gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT An Lạc – TP HCM : + Hai công nhân được giao việc sơn một bức tường. Sau khi người thứ nhất làm được 7 giờ và người thứ hai làm được 4 giờ nữa thì họ sơn được 5/9 bức tường. Sau đó họ cùng làm việc với nhau trong 4 giờ thì chỉ còn lại 1/18 bức tường chưa sơn. Hỏi nếu mỗi người làm riêng thì sau bao nhiêu giờ mỗi người mới sơn xong bức tường? + Trong mặt phẳng Oxy, cho tam giác ABC có A(6;-3), B(-10;9) và C(7;-5). a) Tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm tọa độ D để BGCD là hình bình hành. c) Cho điểm K(x + 2;-3x + 5), tìm x để ba điểm A, B, K thẳng hàng. + Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số y = -x2 + 4x – 6. Tìm tọa độ giao điểm của (P) và đường thẳng (d): y = -4x + 9 bằng phép tính.
Đề thi HKI Toán 10 năm 2019 - 2020 trường Nguyễn Bỉnh Khiêm - TP HCM
Đề thi HKI Toán 10 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HKI Toán 10 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM : + Cho parabol (P): y = ax2 + bx + c (a khác 0). Xác định (P) (tìm a, b, c), biết rằng: (P) có đỉnh I(2;2) và đi qua điểm A(0;-2). + Trong hệ Oxy cho A(4;2), B(-3;6), C(2;1). a) Tính AB, BC, AC? b) Gọi M, N, P lần lượt là trung điểm của AB, BC, AC. Tìm tọa độ M, N, P? c) Chứng minh A, B, C tạo thành tam giác. Tìm tọa độ trọng tâm G của tam giác ABC? d) Tính AB.AC, từ đó tính góc A? + Cho tam giác ABC vuông tại A. AB = 4a, AC = 3a, AH là đường cao. a) Tính BA.BC. b) Tính AH.AC.
Đề thi học kỳ 1 Toán 10 năm 2019 - 2020 trường Trần Hưng Đạo - Hà Nội
Thứ Hai ngày 09 tháng 12 năm 2019, trường THPT Trần Hưng Đạo, quận Thanh Xuân, thành phố Hà Nội tổ chức kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 1 năm học 2019 – 2020. Đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường Trần Hưng Đạo – Hà Nội (đề số 2) được biên soạn theo dạng đề tự luận, đề gồm có 01 trang với 04 bài toán, học sinh có 90 phút để làm bài thi. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường Trần Hưng Đạo – Hà Nội : + Cho hàm số y = x^2 + x – 2 có (P) là đồ thị hàm số. a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số đã cho. b) Dùng đồ thị hoặc bảng biến thiên, tìm tham số m để phương trình x^2 + x – 2 = m có hai nghiệm x1, x2 phân biệt thỏa mãn x1 < 0 < x2 < 1. [ads] + Tổ sản xuất số 1 được giao nhiệm vụ sản xuất 6.000 chiếc áo sơ mi trong một số ngày nhất định. Do có sáng kiến trong sản xuất, tổ đã tăng năng suất, mỗi ngày sản xuất thêm được 140 chiếc áo, nhờ đó đã hoàn thành vượt mức kế hoạch 10% và xong trước thời hạn 5 ngày. Nếu vẫn tiếp tục làm việc với năng suất này khi đến thời hạn dự định, tổ đó sản xuất được thêm bao nhiêu chiếc áo so với nhiệm vụ được giao? + Trong mặt phẳng tọa độ Oxy, cho ba điểm A(2;0), B(-1;1), C(4;6). a) Tìm tọa độ của các vectơ AB, AC. Chứng minh rằng A, B, C không thẳng hàng. b) Tính chu vi và diện tích của tam giác ABC. c) Gọi M là trung điểm của cạnh AB. Tìm tọa độ điểm K sao cho 4CM + 3CK = 0. d) Đường phân giác trong góc A của tam giác ABC cắt cạnh BC tại điểm D. Tìm tọa  độ của D.