Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GDĐT Lạng Sơn

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 02 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Ma trận Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GD&ĐT Lạng Sơn : + Bài toán chỉ sử dụng tổ hợp. + Xác suất của bài toán chọn nhóm. + Giới hạn phân thức có bậc tử bằng bậc mẫu. + Góc giữa cạnh bên với mặt đáy. + KC từ chân đường cao đến mặt xiên trong hình chóp. + Tìm cực trị của hàm số khi biết đồ thị hàm số. + Tìm cực trị của hàm số khi biết BBT. + Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. + Tìm số điểm cực trị của hàm số |f(u)| khi biết đồ thị, BBT f’(x). + Tìm tiệm cận f(x) dựa vào BBT f(x). + Tìm đường tiệm cận, số đường TC của hs. + Nhận dạng BBT hàm số bậc 3. + Tìm tọa độ giao điểm của đồ thị hai hs khi biết f(x) và g(x). + Tìm số nghiệm của pt f(x) = a khi biết đồ thị, BBT f(x). + Tập xác định của hàm số lũy thừa có số mũ hữu tỷ. + Dùng công thức biến đổi cơ số logarit rút gọn biểu thức. + Tính đạo hàm của hàm số logarit. + Tìm Min, Max của biểu thức khi có đk f(u) = f(v) chứa logarit. + Tìm số giá trị nguyên của y để PT Loga có nghiệm thỏa mãn đk bằng PP đánh giá. + GBPT Mũ cơ bản. + GBPT Logarit cơ bản. + GBPT Loga dạng tích. + Nguyên hàm cơ bản của hàm số đa thức. + Nguyên hàm cơ bản của hàm lượng giác. + Định nghĩa của tích phân. + Tính chất của tích phân. + Tích phân của hàm ẩn bằng PP từng phần. + Tích phân của hàm ẩn bằng tạo ra công thức đạo hàm tích, thương. + Biết f’(x), tính tích phân f(x). + Ý nghĩa hình học của tích phân. + Tìm khoảng đơn điệu của hàm số khi biết f’(x), BXD f’(x). + Xét tính đơn điệu của hàm số f(x) khi biết đồ thị, BBT f’(x). + Áp dụng công thức tính thể tích khối chóp. + Áp dụng công thức tính thể tích khối lăng trụ. + Tính chiều cao, khoảng cách bằng thể tích. + Thể tích khối lăng trụ đứng có góc giữa hai mp. + Tính V, Sxq hoặc Stp khi biết R, h, l. + Tính Sxq hoặc Stp khi biết R và h. + Tính V, S khi biết R. + Bài toán kết hợp hình cầu với hình trụ. + Xác định tọa độ vectơ qua phép cộng, trừ vectơ. + Tính độ dài đoạn thẳng khi biết hai đầu mút, độ dài vectơ. + Xác định tọa độ tâm, R, S, V của MC khi biết PTMC. + Viết PTMC khi biết tâm và đi qua 1 điểm. + Nhận diện phương trình mặt cầu. + Xác định VTPT khi biết PTMP. + Nhận diện điểm thuộc MP. + Viết PTMP trung trực của đoạn thẳng. + Tính KC từ điểm đến MP. + Viết PTMP chắn hai đoạn theo tỉ số.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2020 môn Toán trường chuyên Nguyễn Tất Thành - Kon Tum
Thứ Bảy ngày 30 tháng 05 năm 2020, trường THPT chuyên Nguyễn Tất Thành, tỉnh Kon Tum tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT 2020 môn Toán trường chuyên Nguyễn Tất Thành – Kon Tum có cấu trúc bám sát đề tham khảo tốt nghiệp THPT 2020 môn Toán do Bộ GD&ĐT công bố, đề thi có đáp án mã đề 132, 245, 376, 498. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường chuyên Nguyễn Tất Thành – Kon Tum : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a√3 và SA vuông góc với mặt phẳng đáy. Mặt phẳng (P) đi qua điểm A và vuông góc với SC cắt SB, SC, SD lần lượt tại B’, C’, D’. Thể tích khối chóp S.AB’C’D’ bằng? + Đề cương ôn tập chương II môn Lịch sử lớp 12 có 30 câu. Trong đề thi giáo viên có chọn ngẫu nhiên 10 câu trong 30 câu đó. Một học sinh chỉ nắm được 25 câu trong đề cương đó. Xác suất để trong đề thi có ít nhất 9 câu hỏi nằm trong 25 câu mà học sinh đã nắm được là (kết quả làm tròn đến hàng phần nghìn). [ads] + Một người tham gia một chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến đầu tháng 1 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Theo hợp đồng bảo hiểm, sau ít nhất 18 năm thì người đó sẽ được rút tiền về. Biết rằng người đó đóng bảo hiểm từ đầu năm 2002, hỏi đến hết năm 2020 người đó rút về thì được tất cả bao nhiêu triệu đồng? Kết quả làm tròn đến hai chữ số phần thập phân. A. 403,32 (triệu đồng). B. 393,12 (triệu đồng). C. 358,87 (triệu đồng). D. 429,43 (triệu đồng).
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Diễn Châu 2 - Nghệ An
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Diễn Châu 2 – Nghệ An mã đề 107 gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề có cấu trúc và độ khó tương tự đề minh họa tốt nghiệp THPT 2020 môn Toán. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Diễn Châu 2 – Nghệ An : + Để hỗ trợ cho các đối tượng gặp khó khăn trong đại dịch Covid-19 vừa qua, Chính phủ đã triển khai gói cứu trợ lên đến 62 nghìn tỉ đồng. Các chuyên gia ước tính số người đăng kí gói cứu trợ kể từ ngày đầu tiên đến ngày thứ t là f(t) = 300t^2 – 10t^3. Nếu coi f(t) là hàm số xác định trên [0;+∞) thì f'(t) được xem là số lượng người đăng kí cứu trợ (người / ngày) tại thời điểm t. Xác định ngày mà số lượng người đăng kí là lớn nhất? [ads] + Xét tập X = {0;1;2;3;4;8;9}. Lập số tự nhiên có 4 chữ số phân biệt. Chọn một số trong số các số lập được. Tính xác suất để số được chọn thuộc khoảng (2019;9102). + Một khúc gỗ hình trụ cao 30 cm, người ta tiện thành một hình nón có đáy trùng với một đáy hình trụ và đỉnh là tâm của đáy còn lại. Biết phần gỗ bỏ đi có thể tích là 300 cm3. Tính diện tích đáy của hình nón tạo thành?
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT chuyên Bến Tre
Chiều thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Bến Tre, tỉnh Bến Tre tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ nhất. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT chuyên Bến Tre mã đề 245 gồm có 07 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT chuyên Bến Tre : + Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) như hình vẽ. Cho bất phương trình 3f(x) ≥ x^3 – 3x + m (với m là tham số thực). Điều kiện cần và đủ để bất phương trình 3f(x) ≥ x^3 – 3x + m đúng với mọi x thuộc [-√3;√3] là? [ads] + Cho hàm số y = f(x) biết hàm số f(x) có đạo hàm f'(x) và hàm số y = f'(x) có đồ thị như hình vẽ . Đặt g(x) = f(x + 1). Kết luận nào sau đây đúng? A. Hàm số g(x) đồng biến trên khoảng (3;4). B. Hàm số g(x) đồng biến trên khoảng (0;1). C. Hàm số g(x) nghịch biến trên khoảng (2;+vc). D. Hàm số g(x) nghịch biến trên khoảng (4;6). + Kí hiệu Pn, kAn, kCn lần lượt là số các hoán vị của tập có n phần tử, số các chỉnh hợp chập k của tập có n phần tử, số các tổ hợp chập k của tập có n phần tử với k, n thuộc N, 1 ≤ k ≤ n. Trong các đẳng thức sau, đẳng thức nào sai?
Đề thi thử THPT 2020 môn Toán lần 3 trường chuyên Quang Trung - Bình Phước
Thứ Năm ngày 02 tháng 07 năm 2020, trường THPT chuyên Quang Trung, thành phố Đồng Xoài, tỉnh Bình Phước tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề thi thử THPT 2020 môn Toán lần 3 trường THPT chuyên Quang Trung – Bình Phước mã đề 111 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi thử THPT 2020 môn Toán lần 3 trường THPT chuyên Quang Trung – Bình Phước : + Trên mỗi chiếc radio đều có vạch chia để người sử dụng dễ chọn được đúng sóng radio cần tìm. Biết rằng vạch chia ở vị trí cách vạch tận cùng bên trái một khoảng d (cm) thì ứng với tần số F = kad (kHz), trong đó k và a là hai hằng số được chọn sao cho vạch tận cùng bên trái ứng với tần số 53 (kHz), vạch tận cùng bên phải ứng với tần số 160 (kHz) và hai vạch này cách nhau 12 (cm). Người đó muốn mở chương trình ca nhạc có tần số là F = 120 (kHz) thì cần điều chỉnh đến vạch chia cách vị trí tận cùng bên trái một khoảng gần với số nào sau đây? [ads] + Cho hình trụ (H) có chiều cao bằng 2a và hai đáy là (O) và (O0). Trên đường tròn (O) có hai điểm A, B và trên đường tròn (O0) có hai điểm C, D sao cho ABCD là hình vuông và mặt phẳng (ABCD) tạo với đáy một góc 45◦. Tính thể tích khối trụ theo a. + Cho x, y là hai số thực, với y ≥ 0, thỏa mãn x2 + y2 = 1. Gọi m, M lần lượt là giá trị nhỏ nhất và lớn nhất của biểu thức P = 2x + 2y. Khi đó tổng m + M có dạng b/a + 2^(1+1/√a), với a, b nguyên dương, nguyên tố cùng nhau. Tính a + 2b.